高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于强散射点在线估计的距离扩展目标检测方法

郭鹏程 刘峥 罗丁利 李俭朴

郭鹏程, 刘峥, 罗丁利, 李俭朴. 基于强散射点在线估计的距离扩展目标检测方法[J]. 电子与信息学报, 2020, 42(4): 910-916. doi: 10.11999/JEIT190417
引用本文: 郭鹏程, 刘峥, 罗丁利, 李俭朴. 基于强散射点在线估计的距离扩展目标检测方法[J]. 电子与信息学报, 2020, 42(4): 910-916. doi: 10.11999/JEIT190417
Pengcheng GUO, Zheng LIU, Dingli LUO, Jianpu LI. Range Spread Target Detection Based on OnlineEstimation of Strong Scattering Points[J]. Journal of Electronics & Information Technology, 2020, 42(4): 910-916. doi: 10.11999/JEIT190417
Citation: Pengcheng GUO, Zheng LIU, Dingli LUO, Jianpu LI. Range Spread Target Detection Based on OnlineEstimation of Strong Scattering Points[J]. Journal of Electronics & Information Technology, 2020, 42(4): 910-916. doi: 10.11999/JEIT190417

基于强散射点在线估计的距离扩展目标检测方法

doi: 10.11999/JEIT190417
详细信息
    作者简介:

    郭鹏程:男,1983年生,高级工程师,博士生,研究方向为雷达目标检测与识别

    刘峥:男,1964年生,教授,研究方向为雷达信号处理的理论与系统设计、雷达精确制导技术、多传感器融合等

    罗丁利:男,1974年生,研究员,研究方向为雷达信号处理、目标分类识别技术

    李俭朴:男,1994年生,硕士生,研究方向为雷达目标检测

    通讯作者:

    刘峥 lz@xidian.edu.cn

  • 中图分类号: TN957.51

Range Spread Target Detection Based on OnlineEstimation of Strong Scattering Points

  • 摘要:

    传统的距离扩展目标检测一般在散射点密度或散射点数量先验条件下完成,在目标散射点信息完全未知时检测性能会大幅降低。针对这个问题,该文提出一种基于强散射点在线估计的距离扩展目标检测方法(OESS-RSTD),该方法利用机器学习中的无监督聚类算法在线估计强散射点数量以及首次检测门限,然后再结合虚警率,确定2次检测门限,最后通过两次门限检测完成目标有无的判决。该文分别利用仿真数据和实测数据进行了试验验证,并和其他算法进行了试验对比,通过虚警概率一定时的信噪比(SNR)-检测概率曲线验证了该文所提方法相对于传统算法有更高的稳健性,且该方法不需要目标散射点的任何先验信息。

  • 图  1  检测器各区域的示意图

    图  2  非先验依赖的扩展目标检测流程图

    图  3  卡车典型姿态的高分辨距离像

    图  4  基于4种仿真模型的检测性能对比

    图  5  基于实测数据的检测性能对比结果

    表  1  4种典型散射点模型

    编号散射点分布特点名称
    模型11个强散射点,占全部能量单散射点
    模型210个散射点,一个强散射点占50%能量,其他散射点占各占5.556%能量稀疏多散射点
    模型332个散射点,两个强散射点各占25%,其他散射点占各占1.66%能量密集非均匀多散射点
    模型432个散射点,均匀分布,各占3.125%能量密集均匀散射点
    下载: 导出CSV
  • JIANG Yuan, LI Yang, CAI Jinjian, et al. Robust automatic target recognition via HRRP sequence based on scatterer matching[J]. Sensors, 2018, 18(2): No. 593, 1–19. doi: 10.3390/s18020593
    DANIYAN A, LAMBOTHARAN S, DELIGIANNIS A, et al. Bayesian multiple extended target tracking using labeled random finite Sets and Splines[J]. IEEE Transactions on Signal Processing, 2018, 66(22): 6076–6091. doi: 10.1109/TSP.2018.2873537
    HU Qi, JI Hongbing, and ZHANG Yongquan. Tracking of maneuvering non-ellipsoidal extended target with varying number of sub-objects[J]. Mechanical Systems and Signal Processing, 2018, 99: 262–284. doi: 10.1016/j.ymssp.2017.06.013
    HUGHES P K. A high-resolution radar detection strategy[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, AES-19(5): 663–667. doi: 10.1109/TAES.1983.309368
    GERLACH K and STEINER M J. Adaptive detection of range distributed targets[J]. IEEE Transactions on Signal Processing, 1999, 47(7): 1844–1851. doi: 10.1109/78.771034
    顾新锋, 简涛, 何友. 距离扩展目标的双门限恒虚警检测器及性能分析[J]. 电子与信息学报, 2012, 34(6): 1318–1323. doi: 10.3724/SP.J.1146.2011.01094

    GU Xinfeng, JIAN Tao, and HE You. Double threshold CFAR detector of range-spread target and its performance analysis[J]. Journal of Electronics &Information Technology, 2012, 34(6): 1318–1323. doi: 10.3724/SP.J.1146.2011.01094
    ROUFFET T, VALLET P, GRIVEL E, et al. Analysis of a GLRT for the detection of an extended target[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–5. doi: 10.1109/RADAR.2016.7485281.
    LIU Jun, LIU Weijian, TANG Bo, et al. Distributed target detection exploiting persymmetry in Gaussian clutter[J]. IEEE Transactions on Signal Processing, 2019, 67(4): 1022–1033. doi: 10.1109/TSP.2018.2887405
    高彦钊, 占荣辉, 万建伟. KK分布杂波下的距离扩展目标检测算法[J]. 国防科技大学学报, 2015, 37(1): 118–124. doi: 10.11887/j.cn.201501020

    GAO Yanzhao, ZHAN Ronghui, and WAN Jianwei. Range-spread target detection in KK-distributed clutter[J]. Journal of National University of Defense Technology, 2015, 37(1): 118–124. doi: 10.11887/j.cn.201501020
    戴奉周, 刘宏伟, 吴顺君. 一种基于顺序统计量的距离扩展目标检测器[J]. 电子与信息学报, 2009, 31(10): 2488–2492.

    DAI Fengzhou, LIU Hongwei, and WU Shunjun. Order-statistic-based detector for range spread target[J]. Journal of Electronics &Information Technology, 2009, 31(10): 2488–2492.
    LONG Teng, ZHENG Le, LI Yang, et al. Improved double threshold detector for spatially distributed target[J]. IEICE Transactions on Communications, 2012, E95.B(4): 1475–1478. doi: 10.1587/transcom.e95.b.1475
    陈新亮, 王丽, 柳树林, 等. 高分辨雷达扩展目标检测算法研究[J]. 中国科学: 信息科学, 2012, 42(8): 1007–1018. doi: 10.1360/112011-457

    CHEN Xinliang, WANG Li, LIU Shulin, et al. Research on extended target detection for high resolution radar[J]. Scientia Sinica Informationis, 2012, 42(8): 1007–1018. doi: 10.1360/112011-457
    LONG Teng, LIANG Zhennan, and LIU Quanhua. Advanced technology of high-resolution radar: Target detection, tracking, imaging, and recognition[J]. Science China Information Sciences, 2019, 62(4): 40301. doi: 10.1007/s11432-018-9811-0
    XU Shuwen, SHI Xingyu, XUE Jian, et al. Maneuvering range-spread target detection in white Gaussian noise using multiple-pulse combined waveform contrast[C]. 2017 IEEE International Conference on Signal Processing, Communications and Computing, Xiamen, China, 2017: 1–5. doi: 10.1109/ICSPCC.2017.8242373.
    ARTHUR D and VASSILVITSKII S. k-means++: The advantages of careful seeding[C]. The 18th Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, USA, 2007: 1027–1035.
    KANUNGO T, MOUNT D M, NETANYAHU N S, et al. An efficient k-Means clustering algorithm: Analysis and implementation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 881–892. doi: 10.1109/tpami.2002.1017616
    CHEN YEWANG, TANG SHENGYU, BOUGUILA N, et al. A fast clustering algorithm based on pruning unnecessary distance computations in DBSCAN for high-dimensional data[J]. Pattern Recognition, 2018, 83: 375–387. doi: 10.1016/j.patcog.2018.05.030
    NGUYEN B and DE BAETS B. Kernel-based distance metric learning for supervised k-Means clustering[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(10): 3084–3095. doi: 10.1109/TNNLS.2018.2890021
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  2580
  • HTML全文浏览量:  1039
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-06
  • 修回日期:  2019-09-07
  • 网络出版日期:  2019-09-19
  • 刊出日期:  2020-06-04

目录

    /

    返回文章
    返回