高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多核最大均值差异迁移学习的WLAN室内入侵检测方法

周牧 李垚鲆 谢良波 蒲巧林 田增山

周牧, 李垚鲆, 谢良波, 蒲巧林, 田增山. 基于多核最大均值差异迁移学习的WLAN室内入侵检测方法[J]. 电子与信息学报, 2020, 42(5): 1149-1157. doi: 10.11999/JEIT190358
引用本文: 周牧, 李垚鲆, 谢良波, 蒲巧林, 田增山. 基于多核最大均值差异迁移学习的WLAN室内入侵检测方法[J]. 电子与信息学报, 2020, 42(5): 1149-1157. doi: 10.11999/JEIT190358
Mu ZHOU, Yaoping LI, Liangbo XIE, Qiaolin PU, Zengshan TIAN. WLAN Indoor Intrusion Detection Approach Based on Multiple Kernel Maximum Mean Discrepancy Transfer Learning[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1149-1157. doi: 10.11999/JEIT190358
Citation: Mu ZHOU, Yaoping LI, Liangbo XIE, Qiaolin PU, Zengshan TIAN. WLAN Indoor Intrusion Detection Approach Based on Multiple Kernel Maximum Mean Discrepancy Transfer Learning[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1149-1157. doi: 10.11999/JEIT190358

基于多核最大均值差异迁移学习的WLAN室内入侵检测方法

doi: 10.11999/JEIT190358
基金项目: 国家自然科学基金(61771083),重庆市基础与前沿研究计划基金(cstc2017jcyjAX0380),重庆市研究生科研创新项目(CYS18240)
详细信息
    作者简介:

    周牧:男,1984年生,教授,博士生导师,主要研究方向为无线定位与导航技术、信号处理与检测技术、机器学习与信息融合技术等

    李垚鲆:女,1995年生,硕士生,研究方向为室内入侵检测技术

    谢良波:男,1986年生,副教授,主要研究方向为射频识别技术、室内定位技术等

    蒲巧林:女,1988年生,助教,主要研究方向为机器学习、室内定位技术等

    田增山:男,1968年生,教授,博士生导师,主要研究方向为移动通信、个人通信、GPS及蜂窝网定位技术等

    通讯作者:

    李垚鲆 liyaopingna@foxmail.com

  • 中图分类号: TN911.23

WLAN Indoor Intrusion Detection Approach Based on Multiple Kernel Maximum Mean Discrepancy Transfer Learning

Funds: The National Natural Science Foundation of China (61771083), The Fundamental and Frontier Research Project of Chongqing (cstc2017jcyjAX0380), The Postgraduate Scientific Research and Innovation Project of Chongqing (CYS18240)
  • 摘要:

    无线局域网(WLAN)室内入侵检测技术是目前智能检测领域的研究热点之一,而传统基于数据库构建的入侵检测技术没有考虑复杂室内环境中WLAN信号的时变性,从而导致WLAN室内入侵检测系统的鲁棒性较差。为了解决这一问题,该文提出一种基于多核最大均值差异(MKMMD)迁移学习的WLAN室内入侵检测方法。该方法首先利用离线有标记和在线伪标记的接收信号强度(RSS)特征来分别构建源域和目标域;其次,通过构造最优迁移矩阵以最小化源域和目标域RSS特征混合分布之间的MKMMD;再次,利用迁移后的源域RSS特征与对应标签来训练分类器,并将其用于对迁移后的目标域RSS特征进行分类以得到目标域标签集;最后,迭代更新目标域标签集直至算法收敛,进而实现对目标环境的入侵检测。实验结果表明,该文所提方法在保证较高检测精度的同时,能够有效克服信号时变性对检测性能的影响。

  • 图  1  系统框图

    图  2  实验环境结构图

    图  3  不同$\lambda $$q$取值下所提方法的检测性能

    图  4  不同$L$取值下的系统混淆矩阵

    图  5  不同L取值下所提方法的检测性能

    图  6  不同$N$取值下所提方法的检测性能

    图  7  不同核函数下所提方法的检测性能

    表  1  不同分类器的检测性能(%)

    类别FPFNDA
    KNN(迁移前)35.92075.60
    KNN(迁移后)0099.78
    RF(迁移前)6.671.9283.96
    RF(迁移后)0098.90
    SVM(迁移前)18.02093.85
    SVM(迁移后)01.1098.02
    下载: 导出CSV

    表  2  不同方法的检测性能(%)

    指标RASIDPNNPRNN本文方法
    FP6.723.4200
    FN3.312.9200
    DA93.4694.4095.6099.78
    下载: 导出CSV
  • 周培培, 丁庆海, 罗海波, 等. 视频监控中的人群异常行为检测与定位[J]. 光学学报, 2018, 38(8): 0815007. doi: 10.3788/AOS201838.0815007

    ZHOU Peipei, DING Qinghai, LUO Haibo, et al. Anomaly detection and location in crowded surveillance videos[J]. Acta Optica Sinica, 2018, 38(8): 0815007. doi: 10.3788/AOS201838.0815007
    程卫东, 董永贵. 利用热释电红外传感器探测人体运动特征[J]. 仪器仪表学报, 2008, 29(5): 1020–1023. doi: 10.3321/j.issn:0254-3087.2008.05.025

    CHENG Weidong and DONG Yonggui. Detection of human body motion features using pyroelectric infrared sensor[J]. Chinese Journal of Scientific Instrument, 2008, 29(5): 1020–1023. doi: 10.3321/j.issn:0254-3087.2008.05.025
    WANG Hongpeng, LIU Jingtai, SUN Lei, et al. Indoor intrusion detection using an intelligent sensor network[C]. 2008 IEEE World Congress on Intelligent Control and Automation, Chongqing, China, 2008: 2396–2401. doi: 10.1109/WCICA.2008.4593298.
    TIAN Zengshan, LI Yong, ZHOU Mu, et al. WiFi-based adaptive indoor passive intrusion detection[C]. 2018 IEEE 23rd International Conference on Digital Signal Processing, Shanghai, China, 2018: 1–5. doi: 10.1109/ICDSP.2018.8631613.
    YOUSSEF M, MAH M, and AGRAWALA A. Challenges: Device-free passive localization for wireless environments[C]. The 13th Annual ACM International Conference on Mobile Computing and Networking, Montréal, Canada, 2007: 222–229. doi: 10.1145/1287853.1287880.
    ZHOU Rui, CHEN Jiesong, LU Xiang, et al. CSI fingerprinting with SVM regression to achieve device-free passive localization[C]. The 18th IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, Macau, China, 2017: 1–9. doi: 10.1109/WoWMoM.2017.7974313.
    KOSBA A E, SAEED A, and YOUSSEF M. RASID: A robust WLAN device-free passive motion detection system[C]. 2012 IEEE International Conference on Pervasive Computing and Communications, Lugano, Switzerland, 2012: 180–189. doi: 10.1109/PerCom.2012.6199865.
    TIAN Zengshan, ZHOU Xiangdong, ZHOU Mu, et al. Indoor device-free passive localization for intrusion detection using multi-feature PNN[C]. 2015 International Conference on Communications and Networking in China, Shanghai, China, 2015: 272–277. doi: 10.1109/CHINACOM.2015.7497950.
    DEAK G, CURRAN K, CONDELL J, et al. Detection of multi-occupancy using device-free passive localisation[J]. IET Wireless Sensor Systems, 2014, 4(3): 130–137. doi: 10.1049/iet-wss.2013.0031
    LV Jiguang, MAN Dapeng, YANG Wu, et al. Robust WLAN-based indoor intrusion detection using PHY layer information[J]. IEEE Access, 2018, 6: 30117–30127. doi: 10.1109/access.2017.2785444
    TAN Qingqing, HAN Chong, SUN Lijuan, et al. A CSI frequency domain fingerprint-based method for passive indoor human detection[C]. 2018 IEEE International Conference on Trust, Security and Privacy in Computing and Communications/12th IEEE International Conference on Big Data Science and Engineering, New York, USA, 2018: 1832–1837. doi: 10.1109/TrustCom/BigDataSE.2018.00277.
    GRETTON A, SRIPERUMBUDUR B, SEJDINOVIC D, et al. Optimal kernel choice for large-scale two-sample tests[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1205–1213.
    LONG Mingsheng, WANG Jianmin, DING Guiguang, et al. Transfer feature learning with joint distribution adaptation[C]. 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 2013: 2200–2207. doi: 10.1109/ICCV.2013.274.
    DUAN Lixin, TSANG I W, and XU Dong. Domain transfer multiple kernel learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(3): 465–479. doi: 10.1109/tpami.2011.114
    BORGWARDT K M, GRETTON A, RASCH M J, et al. Integrating structured biological data by kernel maximum mean discrepancy[J]. Bioinformatics, 2006, 22(4): e49–e57. doi: 10.1093/bioinformatics/btl242
    PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199–210. doi: 10.1109/TNN.2010.2091281
    SCHOLKÖPF B, SMOLA A, and MÜLLER K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5): 1299–1319. doi: 10.1162/089976698300017467
    汪洪桥, 孙富春, 蔡艳宁, 等. 多核学习方法[J]. 自动化学报, 2010, 36(8): 1037–1050. doi: 10.3724/SP.J.1004.2010.01037

    WANG Hongqiao, SUN Fuchun, CAI Yanning, et al. On multiple kernel learning methods[J]. Acta Automatica Sinica, 2010, 36(8): 1037–1050. doi: 10.3724/SP.J.1004.2010.01037
    COVER T and HART P. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967, 13(1): 21–27. doi: 10.1109/TIT.1967.1053964
    BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5–32. doi: 10.1023/A:1010933404324
    CORTES C and VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273–297. doi: 10.1007/BF00994018
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  3763
  • HTML全文浏览量:  1800
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-21
  • 修回日期:  2019-11-27
  • 网络出版日期:  2019-12-18
  • 刊出日期:  2020-06-04

目录

    /

    返回文章
    返回