High-performance Co-prime Spectral Analysis Method Based on Parallelled All-phase Point-pass Filtering
-
摘要:
为根本消除欠采样宽频谱分析中的伪峰副效应,该文提出基于并行全相位点通滤波的高性能互素谱分析方法。通过剖析经典互素谱分析的机理,指出产生伪峰效应的根源在于上、下通道的多相滤波支路之间存在多余的重叠边界频带。故借助全相位点通滤波器组来取代经典互素谱的原型滤波器,并且推导出基于并行点通滤波的互素谱分析流程。理论分析和仿真实验均表明,新的方法显著改善谱分析性能:不仅从根本上消除了伪峰产生的可能,而且相比于经典互素谱分析还大大提升了谱分辨率,从而具有较高的密集谱成分辨识性能。在软件无线电、雷达探测、无源定位、海事无线电等领域有广泛应用前景。
Abstract:In order to completely remove the spurious-peak side effect in the undersampling based wide-band spectral analysis, this paper proposes a high-performance co-prime spectral analysis method based on paralleled all-phase point-pass filtering. On basis of a deep analysis on the mechanism of the classical co-prime spectral analysis, it is discovered that this spurious-peak side effect arises from those redudant overlapping boundary-bands related to distinct polyphase filtering branches between the up data path and the down data path. Therefore, through replacing the prototype filters in the classical co-prime spectral analysis by the all-phase point-pass filtering banks, a novel co-prime analysis dataflow is derived based on paralleled all-phase point-pass filtering. Both theoretic analysis and numerical simulation show that the proposed spectral analysis method achieves remarkable performance improvement: it can not only completely remove the spurious-peak side effect, but also obtain a much higher spectral resolution than the classical co-prime analysis, thereby possessing another merit of distinguishing dense spectral components. The proposed spectral analysis method possesses vast potentials in the software-defined radio, radar detection, passive positioning and marine wireless communication etc.
-
郑仕链, 杨小牛. 用于调制宽带转换器压缩频谱感知的重构失败判定方法[J]. 电子与信息学报, 2015, 37(1): 236–240. doi: 10.11999/JEIT140127ZHENG Shilian and YANG Xiaoniu. A reconstruction failure detection scheme for modulated wideband converter based compressed spectrum sensing[J]. Journal of Electronics &Information Technology, 2015, 37(1): 236–240. doi: 10.11999/JEIT140127 DI MARTINO G and IODICE A. Passive beamforming with coprime arrays[J]. IET Radar, Sonar & Navigation, 2017, 11(6): 964–971. doi: 10.1049/iet-rsn.2016.0517 单宇轩, 王健, 黄翔东. 基于互素谱分析的海洋无线电信道感知[C]. 第十二届全国信号和智能信息处理与应用学术会议论文集, 杭州, 2018: 244–248.SHAN Yuxuan, WANG Jian, and HUANG Xiangdong. Maritime wireless channel recognition based on Co-prime spectrum analysis[C]. The 12th China Signal and Intelligent Information Processing and Application Workshop, Hangzhou, China, 2018: 244–248. SUN Hongjian, NALLANATHAN A, WANG Chengxiang, et al. Wideband spectrum sensing for cognitive radio networks: A survey[J]. IEEE Wireless Communications, 2013, 20(2): 74–81. doi: 10.1109/MWC.2013.6507397 TROPP J A, LASKA J N, DUARTE M F, et al. Beyond Nyquist: Efficient sampling of sparse bandlimited signals[J]. IEEE Transactions on Information Theory, 2010, 56(1): 520–544. doi: 10.1109/TIT.2009.2034811 MISHALI M and ELDAR Y C. From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 375–391. doi: 10.1109/jstsp.2010.2042414 VAIDYANATHAN P P and PAL P. Sparse sensing with Co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573–586. doi: 10.1109/TSP.2010.2089682 VAIDYANATHAN P P and PAL P. Theory of sparse coprime sensing in multiple dimensions[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3592–3608. doi: 10.1109/tsp.2011.2135348 VAIDYANATHAN P P and PAL P. Sparse coprime sensing with multidimensional lattice arrays[C]. 2011 Digital Signal Processing and Signal Processing Education Meeting, Sedona, USA, 2011: 425–430. QIN Si, ZHANG Y D, AMIN M G, et al. Generalized coprime sampling of Toeplitz matrices for spectrum estimation[J]. IEEE Transactions on Signal Processing, 2017, 65(1): 81–94. doi: 10.1109/TSP.2016.2614799 HUANG Xiangdong, HAN Yiwen, YAN Ziyang, et al. Resolution doubled Co-prime spectral analyzers for removing spurious peaks[J]. IEEE Transactions on Signal Processing, 2016, 64(10): 2489–2498. doi: 10.1109/TSP.2016.2526964 黄翔东, 韩溢文, 闫子阳, 等. 基于全相位滤波的互素谱分析的高效设计[J]. 系统工程与电子技术, 2017, 39(1): 27–33.HUANG Xiangdong, HAN Yiwen, YAN Ziyang, et al. Efficient design of co-prime spectral analysis based on all-phase filtering[J]. Systems Engineering and Electronics, 2017, 39(1): 27–33. 黄翔东, 王兆华. 基于两种对称频率采样的全相位FIR滤波器设计[J]. 电子与信息学报, 2007, 29(2): 478–481.HUANG Xiangdong and WANG Zhaohua. All-phase FIR filter design based on two kinds of symmetric frequency sampling[J]. Journal of Electronics &Information Technology, 2007, 29(2): 478–481. 闫格, 黄翔东, 刘开华. 基于全相位窄带滤波的超分辨率时延估计[J]. 天津大学学报: 自然科学与工程技术版, 2014, 47(3): 249–254. doi: 10.11784/tdxbz201206042YAN Ge, HUANG Xiangdong, and LIU Kaihua. Super-resolution time delay estimation based on all-phase narrow-band filtering[J]. Journal of Tianjin University:Science and Technology, 2014, 47(3): 249–254. doi: 10.11784/tdxbz201206042 黄翔东, 王越冬, 靳旭康, 等. 无窗全相位FFT/FFT相位差频移补偿频率估计器[J]. 电子与信息学报, 2016, 38(5): 1135–1142. doi: 10.11999/JEIT151041HUANG Xiangdong, WANG Yuedong, JIN Xukang, et al. No-windowed apFFT/FFT phase difference frequency estimator based on frequency-shift & compensation[J]. Journal of Electronics &Information Technology, 2016, 38(5): 1135–1142. doi: 10.11999/JEIT151041 黄翔东, 徐婧文, 张博, 等. 低复杂度的可变分数时延滤波器设计[J]. 电子与信息学报, 2018, 40(4): 985–991. doi: 10.11999/JEIT170349HUANG Xiangdong, XU Jingwen, ZHANG Bo, et al. Low-complexity design of variable fractional delay filters[J]. Journal of Electronics &Information Technology, 2018, 40(4): 985–991. doi: 10.11999/JEIT170349