高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时频集中度指标的多旋翼无人机微动特征参数估计方法

宋晨 周良将 吴一戎 丁赤飚

宋晨, 周良将, 吴一戎, 丁赤飚. 基于时频集中度指标的多旋翼无人机微动特征参数估计方法[J]. 电子与信息学报, 2020, 42(8): 2029-2036. doi: 10.11999/JEIT190309
引用本文: 宋晨, 周良将, 吴一戎, 丁赤飚. 基于时频集中度指标的多旋翼无人机微动特征参数估计方法[J]. 电子与信息学报, 2020, 42(8): 2029-2036. doi: 10.11999/JEIT190309
Chen SONG, Liangjiang ZHOU, Yirong WU, Chibiao DING. An Estimation Method of Micro-movement Parameters of UAV Based on The Concentration of Time-Frequency[J]. Journal of Electronics & Information Technology, 2020, 42(8): 2029-2036. doi: 10.11999/JEIT190309
Citation: Chen SONG, Liangjiang ZHOU, Yirong WU, Chibiao DING. An Estimation Method of Micro-movement Parameters of UAV Based on The Concentration of Time-Frequency[J]. Journal of Electronics & Information Technology, 2020, 42(8): 2029-2036. doi: 10.11999/JEIT190309

基于时频集中度指标的多旋翼无人机微动特征参数估计方法

doi: 10.11999/JEIT190309
详细信息
    作者简介:

    宋晨:男,1992年生,博士生,研究方向为雷达信号处理、目标检测与识别等

    周良将:男,1981年生,研究员,研究方向为合成孔径雷达系统设计、系统误差补偿及其相关信号处理技术

    吴一戎:男,1963年生,研究员,中国科学院院士,研究方向为高分辨机载合成孔径雷达、SAR信号处理算法研究、遥感卫星地面处理与应用系统的体系结构等

    丁赤飚:男,1969年生,研究员,研究方向为先进合成孔径雷达系统和信号处理技术、数字信号处理等

    通讯作者:

    周良将 ljzhou@mail.ie.ac.cn

  • 中图分类号: TN911.7

An Estimation Method of Micro-movement Parameters of UAV Based on The Concentration of Time-Frequency

  • 摘要:

    无人机旋翼转动产生的微多普勒调制能够反映此类目标的微动特性,准确估计无人机旋翼长度、转动频率对于无人机的检测与识别具有重要意义。该文针对调频连续波体制雷达,提出一种基于时频集中度指标(CTF)的多旋翼无人机微动特征参数估计方法,推导了无人机旋翼微动特征参数与微多普勒分量信号参数之间的映射关系,在时频旋转域基于时频集中度指标,提高了各微动分量的区分度,相比于传统方法,提高了多分量微多普勒信号的参数估计精度,在低信噪比环境下也具有很好的鲁棒性。通过仿真和实际场景实验验证了方法的有效性。

  • 图  1  旋翼投影到雷达平面示意图

    图  2  多分量微多普勒信号参数估计方法流程图

    图  3  仿真数据时频旋转前后对比

    图  4  时频分析结和Hough变换仿真结果对比

    图  5  频谱集中度指标仿真结果

    图  6  不同方法微动参数估计误差对比

    图  7  实验数据处理结果

    表  1  微多普勒信号参数估计方法的计算效率对比

    方法STFT-HoughWVD-HoughHHTGWTCTF
    运算时间(s)89.420391.492464.842757.252671.2180
    下载: 导出CSV

    表  2  多次实验微动目标参数估计结果

    实验次数分量序号旋翼长度(cm)初始角度(°)旋翼转速(Hz)
    1112.5824.290.90
    212.5975.683.33
    2112.6148.5104.58
    212.63147.195.25
    3112.575.475.54
    212.55126.171.22
    下载: 导出CSV
  • TAHMOUSH D. Review of micro-Doppler signatures[J]. IET Radar, Sonar & Navigation, 2015, 9(9): 1140–1146. doi: 10.1049/iet-rsn.2015.0118
    CHEN V C, LI F, HO S S, et al. Micro-Doppler effect in radar: Phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 2–21. doi: 10.1109/TAES.2006.1603402
    XIONG Xiangyu, LIU Hui, DENG Zhenmiao, et al. Micro-Doppler ambiguity resolution with variable shrinkage ratio based on time-delayed cross correlation processing for wideband radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4): 1906–1917. doi: 10.1109/TGRS.2018.2870149
    张群, 胡健, 罗迎, 等. 微动目标雷达特征提取、成像与识别研究进展[J]. 雷达学报, 2018, 7(5): 531–547. doi: 10.12000/JR18049

    ZHANG Qun, HU Jian, LUO Ying, et al. Research progresses in radar feature extraction, imaging, and recognition of target with micro-motions[J]. Journal of Radars, 2018, 7(5): 531–547. doi: 10.12000/JR18049
    HE Yongfu, PENG Yu, WANG Shaojun, et al. ADMOST: UAV flight data anomaly detection and mitigation via online subspace tracking[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(4): 1035–1044. doi: 10.1109/TIM.2018.2863499
    SEJDIĆ E, OROVIĆ I, and STANKOVIĆ S. Compressive sensing meets time-frequency: An overview of recent advances in time-frequency processing of sparse signals[J]. Digital Signal Processing, 2018, 77: 22–35. doi: 10.1016/j.dsp.2017.07.016
    OH B S, GUO Xin, WAN Fangyuan, et al. Micro-Doppler mini-UAV classification using empirical-mode decomposition features[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(2): 227–231. doi: 10.1109/LGRS.2017.2781711
    SONG Chen, WU Yirong, ZHOU Liangjiang, et al. A multicomponent micro-Doppler signal decomposition and parameter estimation method for target recognition[J]. Science China Information Sciences, 2019, 62(2): 29304. doi: 10.1007/s11432-018-9491-y
    章鹏飞, 李刚, 霍超颖, 等. 基于双雷达微动特征融合的无人机分类识别[J]. 雷达学报, 2018, 7(5): 557–564. doi: 10.12000/JR18061

    ZHANG Pengfei, LI Gang, HUO Chaoying, et al. Classification of drones based on micro-Doppler radar signatures using dual radar sensors[J]. Journal of Radars, 2018, 7(5): 557–564. doi: 10.12000/JR18061
    REN Lingyun, TRAN N, FOROUGHIAN F, et al. Short-time state-space method for micro-Doppler identification of walking subject using UWB impulse Doppler radar[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(7): 3521–3534. doi: 10.1109/TMTT.2018.2829523
    ZHAO Yichao and SU Yi. Cyclostationary phase analysis on micro-Doppler parameters for radar-based small UAVs detection[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(8): 2048–2057. doi: 10.1109/TIM.2018.2811256
    MARÁK K, PETŐ T, BILICZ S, et al. Electromagnetic simulation of rotating propeller blades for radar detection purposes[J]. IEEE Transactions on Magnetics, 2018, 54(3): 7203504. doi: 10.1109/TMAG.2017.2752904
    胡健, 罗迎, 张群, 等. 空间旋转目标窄带雷达干涉式三维成像与微动特征提取[J]. 电子与信息学报, 2019, 41(2): 270–277. doi: 10.11999/JEIT180372

    HU Jian, LUO Ying, ZHANG Qun, et al. Three-dimensional interferometric imaging and micro-motion feature extraction of rotating space targets based on narrowband radar[J]. Journal of Electronics &Information Technology, 2019, 41(2): 270–277. doi: 10.11999/JEIT180372
    SPARR T and KRANE B. Micro-Doppler analysis of vibrating targets in SAR[J]. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(4): 277–283. doi: 10.1049/ip-rsn:20030697
    STANKOVIC L, DAKOVIC M, THAYAPARAN T, et al. Inverse radon transform-based micro-Doppler analysis from a reduced set of observations[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1155–1169. doi: 10.1109/TAES.2014.140098
    ZHOU Yang, BI Daping, SHEN Aiguo, et al. Hough transform-based large micro-motion target detection and estimation in synthetic aperture radar[J]. IET Radar, Sonar & Navigation, 2019, 13(4): 558–565. doi: 10.1049/iet-rsn.2018.5407
    CHEN Shiqian, YANG Yang, WEI Kexiang, et al. Time-varying frequency-modulated component extraction based on parameterized demodulation and singular value decomposition[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(2): 276–285. doi: 10.1109/TIM.2015.2494632
    LI Ao, WU Zhiqiang, LU Huaiyin, et al. Collaborative self-regression method with nonlinear feature based on multi-task learning for image classification[J]. IEEE Access, 2018, 6: 43513–43525. doi: 10.1109/ACCESS.2018.2862159
    STANKOVIC L, DAKOVIC M, and THAYAPARAN T. Time-Frequency Signal Analysis with Applications[M]. Norwood, USA: Artech House, 2013: 205–243.
    李明, 吴娇娇, 左磊, 等. 基于实测数据的空中目标分类识别算法[J]. 电子与信息学报, 2018, 40(11): 2606–2613. doi: 10.11999/JEIT180024

    LI Ming, WU Jiaojiao, ZUO Lei, et al. Aircraft target classification and recognition algorithm based on measured data[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2606–2613. doi: 10.11999/JEIT180024
    YANG Yang, PENG Zhike, DONG Xingjian, et al. Application of parameterized time-frequency analysis on multicomponent frequency modulated signals[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(12): 3169–3180. doi: 10.1109/TIM.2014.2313961
    罗迎, 龚逸帅, 陈怡君, 等. 基于跟踪脉冲的MIMO雷达多目标微动特征提取[J]. 雷达学报, 2018, 7(5): 575–584. doi: 10.12000/JR18035

    LUO Ying, GONG Yishuai, CHEN Yijun, et al. Multi-target micro-motion feature extraction based on tracking pulses in MIMO radar[J]. Journal of Radars, 2018, 7(5): 575–584. doi: 10.12000/JR18035
    XU Huajian, YANG Zhiwei, TIAN Min, et al. An extended moving target detection approach for high-resolution multichannel SAR-GMTI systems based on enhanced shadow-aided decision[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 715–729. doi: 10.1109/TGRS.2017.2754098
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  2443
  • HTML全文浏览量:  877
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-30
  • 修回日期:  2019-12-23
  • 网络出版日期:  2020-06-28
  • 刊出日期:  2020-08-18

目录

    /

    返回文章
    返回