高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多流融合生成对抗网络的遥感图像融合方法

雷大江 张策 李智星 吴渝

雷大江, 张策, 李智星, 吴渝. 基于多流融合生成对抗网络的遥感图像融合方法[J]. 电子与信息学报, 2020, 42(8): 1942-1949. doi: 10.11999/JEIT190273
引用本文: 雷大江, 张策, 李智星, 吴渝. 基于多流融合生成对抗网络的遥感图像融合方法[J]. 电子与信息学报, 2020, 42(8): 1942-1949. doi: 10.11999/JEIT190273
Dajiang LEI, Ce ZHANG, Zhixing LI, Yu WU. Remote Sensing Image Fusion Based on Generative Adversarial Network with Multi-stream Fusion Architecture[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1942-1949. doi: 10.11999/JEIT190273
Citation: Dajiang LEI, Ce ZHANG, Zhixing LI, Yu WU. Remote Sensing Image Fusion Based on Generative Adversarial Network with Multi-stream Fusion Architecture[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1942-1949. doi: 10.11999/JEIT190273

基于多流融合生成对抗网络的遥感图像融合方法

doi: 10.11999/JEIT190273
基金项目: 重庆市留学归国人员创新创业项目(cx2018120),国家社会科学基金(17XFX013),重庆市基础研究与前沿探索项目(cstc2015jcyjA40018)
详细信息
    作者简介:

    雷大江:男,1979年生,副教授,研究方向为机器学习

    张策:男,1994年生,硕士生,研究方向为图像处理

    李智星:男,1985年生,副教授,研究方向为自然语言处理

    吴渝:女,1970年生,教授,研究方向为网络智能

    通讯作者:

    雷大江 leidj@cqupt.edu.cn

  • 中图分类号: TN911.73; TP751

Remote Sensing Image Fusion Based on Generative Adversarial Network with Multi-stream Fusion Architecture

Funds: The Chongqing Innovative Project of Overseas Study (cx2018120), The National Social Science Foundation of China (17XFX013), The Natural Science Foundation of Chongqing (cstc2015jcyjA40018)
  • 摘要:

    由于强大的高质量图像生成能力,生成对抗网络在图像融合和图像超分辨率等计算机视觉的研究中得到了广泛关注。目前基于生成对抗网络的遥感图像融合方法只使用网络学习图像之间的映射,缺乏对遥感图像中特有的全锐化领域知识的应用。该文提出一种融入全色图空间结构信息的优化生成对抗网络遥感图像融合方法。通过梯度算子提取全色图空间结构信息,将提取的特征同时加入判别器和具有多流融合架构的生成器,设计相应的优化目标和融合规则,从而提高融合图像的质量。结合WorldView-3卫星获取的图像进行实验,结果表明,所提方法能够生成高质量的融合图像,在主观视觉和客观评价指标上都优于大多先进的遥感图像融合方法。

  • 图  1  用于低分辨率的多光谱图像与全色图像梯度信息融合的生成对抗网络框架

    图  2  多流融合框架详细的结构

    图  3  基于WorldView-3卫星数据集的仿真实验融合结果

    图  4  图3中各方法与真实图像对比的残差图

    图  5  基于WorldView-3卫星的真实数据融合结果

    图  6  WorldView-3卫星真实数据融合结果关键局部区域

    表  1  基于WorldView-3卫星的仿真实验融合结果评价

    融合方法SAMERGAS$ {Q}_{8} $SCC
    ATWT-M38.04786.52080.71370.7717
    BDSD7.64556.43140.80740.8834
    PanNet5.86904.82960.86060.9080
    PCNN5.59304.57030.89680.9332
    PSGAN5.56574.19410.90000.9373
    本文算法5.45704.22000.90530.9404
    参考值0011
    下载: 导出CSV

    表  2  基于WorldView-3卫星的真实数据实验融合结果评价

    融合方法$ {D}_{\lambda } $$ {D}_{s} $QNR
    ATWT-M30.07500.10990.8233
    BDSD0.0528 0.06170.8888
    PanNet0.06530.05090.8871
    PCNN0.06420.04860.8903
    PSGAN0.06120.04520.8964
    本文算法0.05540.0412 0.9057
    参考值001
    下载: 导出CSV
  • THOMAS C, RANCHIN T, WALD L, et al. Synthesis of multispectral images to high spatial resolution: A critical review of fusion methods based on remote sensing physics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(5): 1301–1312. doi: 10.1109/TGRS.2007.912448
    LIU Pengfei, XIAO Liang, ZHANG Jun, et al. Spatial-hessian-feature-guided variational model for pan-sharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 2235–2253. doi: 10.1109/TGRS.2015.2497966
    纪峰, 李泽仁, 常霞, 等. 基于PCA和NSCT变换的遥感图像融合方法[J]. 图学学报, 2017, 38(2): 247–252. doi: 10.11996/JG.j.2095-302X.2017020247

    JI Feng, LI Zeren, CHANG Xia, et al. Remote sensing image fusion method based on PCA and NSCT transform[J]. Journal of Graphics, 2017, 38(2): 247–252. doi: 10.11996/JG.j.2095-302X.2017020247
    RAHMANI S, STRAIT M, MERKURJEV D, et al. An adaptive IHS Pan-sharpening method[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(4): 746–750. doi: 10.1109/LGRS.2010.2046715
    GARZELLI A, NENCINI F, and CAPOBIANCO L. Optimal MMSE Pan sharpening of very high resolution multispectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 228–236. doi: 10.1109/TGRS.2007.907604
    RANCHIN T and WALD L. Fusion of high spatial and spectral resolution images: The ARSIS concept and its implementation[J]. Photogrammetric Engineering and Remote Sensing, 2000, 66(1): 49–61.
    肖化超, 周诠, 郑小松. 基于IHS变换和Curvelet变换的卫星遥感图像融合方法[J]. 华南理工大学学报: 自然科学版, 2016, 44(1): 58–64. doi: 10.3969/j.issn.1000-565X.2016.01.009

    XIAO Huachao, ZHOU Quan, and ZHENG Xiaosong. A fusion method of satellite remote sensing image based on IHS transform and Curvelet transform[J]. Journal of South China University of Technology:Natural Science Edition, 2016, 44(1): 58–64. doi: 10.3969/j.issn.1000-565X.2016.01.009
    ZENG Delu, HU Yuwen, HUANG Yue, et al. Pan-sharpening with structural consistency and ℓ1/2 gradient prior[J]. Remote Sensing Letters, 2016, 7(12): 1170–1179. doi: 10.1080/2150704X.2016.1222098
    LIU Yu, CHEN Xun, WANG Zengfu, et al. Deep learning for pixel-level image fusion: Recent advances and future prospects[J]. Information Fusion, 2018, 42: 158–173. doi: 10.1016/J.INFFUS.2017.10.007
    YANG Junfeng, FU Xueyang, HU Yuwen, et al. PanNet: A deep network architecture for pan-sharpening[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 1753–1761. doi: 10.1109/ICCV.2017.193.
    MASI G, COZZOLINO D, VERDOLIVA L, et al. Pansharpening by convolutional neural networks[J]. Remote Sensing, 2016, 8(7): 594. doi: 10.3390/rs8070594
    LIU Xiangyu, WANG Yunhong, and LIU Qingjie. PSGAN: A generative adversarial network for remote sensing image Pan-sharpening[C]. The 25th IEEE International Conference on Image Processing, Athens, Greece, 2018: 873–877. doi: 10.1109/ICIP.2018.8451049.
    GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. The 27th International Conference on Neural Information Processing Systems, Cambridge, USA, 2014: 2672–2680.
    AIAZZI B, ALPARONE L, BARONTI S, et al. MTF-tailored multiscale fusion of high-resolution MS and Pan imagery[J]. Photogrammetric Engineering & Remote Sensing, 2006, 72(5): 591–596. doi: 10.14358/PERS.72.5.591
    RONNEBERGER O, FISCHER P, and BROX T. U-net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241. doi: 10.1007/978-3-319-24574-4_28.
    GARZELLI A and NENCINI F. Hypercomplex quality assessment of multi/hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4): 662–665. doi: 10.1109/LGRS.2009.2022650
    WALD L. Data Fusion: Definitions and Architectures: Fusion of Images of Different Spatial Resolutions[M]. Paris, France: Ecole des Mines de Paris, 2002: 165–189.
    VIVONE G, ALPARONE L, CHANUSSOT J, et al. A critical comparison among pansharpening algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2565–2586. doi: 10.1109/TGRS.2014.2361734
    张新曼, 韩九强. 基于视觉特性的多尺度对比度塔图像融合及性能评价[J]. 西安交通大学学报, 2004, 38(4): 380–383. doi: 10.3321/j.issn.0253-987X.2004.04.013

    ZHANG Xinman and HAN Jiuqiang. Image fusion of multiscale contrast pyramid-Based vision feature and its performance evaluation[J]. Journal of Xian Jiaotong University, 2004, 38(4): 380–383. doi: 10.3321/j.issn.0253-987X.2004.04.013
    ALPARONE L, AIAZZI B, BARONTI S, et al. Multispectral and panchromatic data fusion assessment without reference[J]. Photogrammetric Engineering & Remote Sensing, 2008, 74(2): 193–200. doi: 10.14358/PERS.74.2.193
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  2393
  • HTML全文浏览量:  1020
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-19
  • 修回日期:  2020-02-21
  • 网络出版日期:  2020-06-26
  • 刊出日期:  2020-08-18

目录

    /

    返回文章
    返回