Remote Sensing Image Fusion Based on Generative Adversarial Network with Multi-stream Fusion Architecture
-
摘要:
由于强大的高质量图像生成能力,生成对抗网络在图像融合和图像超分辨率等计算机视觉的研究中得到了广泛关注。目前基于生成对抗网络的遥感图像融合方法只使用网络学习图像之间的映射,缺乏对遥感图像中特有的全锐化领域知识的应用。该文提出一种融入全色图空间结构信息的优化生成对抗网络遥感图像融合方法。通过梯度算子提取全色图空间结构信息,将提取的特征同时加入判别器和具有多流融合架构的生成器,设计相应的优化目标和融合规则,从而提高融合图像的质量。结合WorldView-3卫星获取的图像进行实验,结果表明,所提方法能够生成高质量的融合图像,在主观视觉和客观评价指标上都优于大多先进的遥感图像融合方法。
Abstract:The generative adversarial network receives extensive attention in the study of computer vision such as image fusion and image super-resolution, due to its strong ability of generating high quality images. At present, the remote sensing image fusion method based on generative adversarial network only learns the mapping between the images, and lacks the unique Pan-sharpening domain knowledge. This paper proposes a remote sensing image fusion method based on optimized generative adversarial network with the integration of the spatial structure information of panchromatic image. The proposed algorithm extracts the spatial structure information of the panchromatic image by the gradient operator. The extracted feature would be added to both the discriminator and the generator which uses a multi-stream fusion architecture. The corresponding optimization objective and fusion rules are then designed to improve the quality of the fused image. Experiments on images acquired by WorldView-3 satellites demonstrate that the proposed method can generate high quality fused images, which is better than the most of advanced remote sensing image fusion methods in both subjective visual and objective evaluation indicators.
-
图 4 图3中各方法与真实图像对比的残差图
表 1 基于WorldView-3卫星的仿真实验融合结果评价
融合方法 SAM ERGAS $ {Q}_{8} $ SCC ATWT-M3 8.0478 6.5208 0.7137 0.7717 BDSD 7.6455 6.4314 0.8074 0.8834 PanNet 5.8690 4.8296 0.8606 0.9080 PCNN 5.5930 4.5703 0.8968 0.9332 PSGAN 5.5657 4.1941 0.9000 0.9373 本文算法 5.4570 4.2200 0.9053 0.9404 参考值 0 0 1 1 表 2 基于WorldView-3卫星的真实数据实验融合结果评价
融合方法 $ {D}_{\lambda } $ $ {D}_{s} $ QNR ATWT-M3 0.0750 0.1099 0.8233 BDSD 0.0528 0.0617 0.8888 PanNet 0.0653 0.0509 0.8871 PCNN 0.0642 0.0486 0.8903 PSGAN 0.0612 0.0452 0.8964 本文算法 0.0554 0.0412 0.9057 参考值 0 0 1 -
THOMAS C, RANCHIN T, WALD L, et al. Synthesis of multispectral images to high spatial resolution: A critical review of fusion methods based on remote sensing physics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(5): 1301–1312. doi: 10.1109/TGRS.2007.912448 LIU Pengfei, XIAO Liang, ZHANG Jun, et al. Spatial-hessian-feature-guided variational model for pan-sharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 2235–2253. doi: 10.1109/TGRS.2015.2497966 纪峰, 李泽仁, 常霞, 等. 基于PCA和NSCT变换的遥感图像融合方法[J]. 图学学报, 2017, 38(2): 247–252. doi: 10.11996/JG.j.2095-302X.2017020247JI Feng, LI Zeren, CHANG Xia, et al. Remote sensing image fusion method based on PCA and NSCT transform[J]. Journal of Graphics, 2017, 38(2): 247–252. doi: 10.11996/JG.j.2095-302X.2017020247 RAHMANI S, STRAIT M, MERKURJEV D, et al. An adaptive IHS Pan-sharpening method[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(4): 746–750. doi: 10.1109/LGRS.2010.2046715 GARZELLI A, NENCINI F, and CAPOBIANCO L. Optimal MMSE Pan sharpening of very high resolution multispectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 228–236. doi: 10.1109/TGRS.2007.907604 RANCHIN T and WALD L. Fusion of high spatial and spectral resolution images: The ARSIS concept and its implementation[J]. Photogrammetric Engineering and Remote Sensing, 2000, 66(1): 49–61. 肖化超, 周诠, 郑小松. 基于IHS变换和Curvelet变换的卫星遥感图像融合方法[J]. 华南理工大学学报: 自然科学版, 2016, 44(1): 58–64. doi: 10.3969/j.issn.1000-565X.2016.01.009XIAO Huachao, ZHOU Quan, and ZHENG Xiaosong. A fusion method of satellite remote sensing image based on IHS transform and Curvelet transform[J]. Journal of South China University of Technology:Natural Science Edition, 2016, 44(1): 58–64. doi: 10.3969/j.issn.1000-565X.2016.01.009 ZENG Delu, HU Yuwen, HUANG Yue, et al. Pan-sharpening with structural consistency and ℓ1/2 gradient prior[J]. Remote Sensing Letters, 2016, 7(12): 1170–1179. doi: 10.1080/2150704X.2016.1222098 LIU Yu, CHEN Xun, WANG Zengfu, et al. Deep learning for pixel-level image fusion: Recent advances and future prospects[J]. Information Fusion, 2018, 42: 158–173. doi: 10.1016/J.INFFUS.2017.10.007 YANG Junfeng, FU Xueyang, HU Yuwen, et al. PanNet: A deep network architecture for pan-sharpening[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 1753–1761. doi: 10.1109/ICCV.2017.193. MASI G, COZZOLINO D, VERDOLIVA L, et al. Pansharpening by convolutional neural networks[J]. Remote Sensing, 2016, 8(7): 594. doi: 10.3390/rs8070594 LIU Xiangyu, WANG Yunhong, and LIU Qingjie. PSGAN: A generative adversarial network for remote sensing image Pan-sharpening[C]. The 25th IEEE International Conference on Image Processing, Athens, Greece, 2018: 873–877. doi: 10.1109/ICIP.2018.8451049. GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. The 27th International Conference on Neural Information Processing Systems, Cambridge, USA, 2014: 2672–2680. AIAZZI B, ALPARONE L, BARONTI S, et al. MTF-tailored multiscale fusion of high-resolution MS and Pan imagery[J]. Photogrammetric Engineering & Remote Sensing, 2006, 72(5): 591–596. doi: 10.14358/PERS.72.5.591 RONNEBERGER O, FISCHER P, and BROX T. U-net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241. doi: 10.1007/978-3-319-24574-4_28. GARZELLI A and NENCINI F. Hypercomplex quality assessment of multi/hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4): 662–665. doi: 10.1109/LGRS.2009.2022650 WALD L. Data Fusion: Definitions and Architectures: Fusion of Images of Different Spatial Resolutions[M]. Paris, France: Ecole des Mines de Paris, 2002: 165–189. VIVONE G, ALPARONE L, CHANUSSOT J, et al. A critical comparison among pansharpening algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2565–2586. doi: 10.1109/TGRS.2014.2361734 张新曼, 韩九强. 基于视觉特性的多尺度对比度塔图像融合及性能评价[J]. 西安交通大学学报, 2004, 38(4): 380–383. doi: 10.3321/j.issn.0253-987X.2004.04.013ZHANG Xinman and HAN Jiuqiang. Image fusion of multiscale contrast pyramid-Based vision feature and its performance evaluation[J]. Journal of Xi’an Jiaotong University, 2004, 38(4): 380–383. doi: 10.3321/j.issn.0253-987X.2004.04.013 ALPARONE L, AIAZZI B, BARONTI S, et al. Multispectral and panchromatic data fusion assessment without reference[J]. Photogrammetric Engineering & Remote Sensing, 2008, 74(2): 193–200. doi: 10.14358/PERS.74.2.193