高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于最优索引广义正交匹配追踪的非正交多址系统多用户检测

申滨 吴和彪 崔太平 陈前斌

申滨, 吴和彪, 崔太平, 陈前斌. 基于最优索引广义正交匹配追踪的非正交多址系统多用户检测[J]. 电子与信息学报, 2020, 42(3): 621-628. doi: 10.11999/JEIT190270
引用本文: 申滨, 吴和彪, 崔太平, 陈前斌. 基于最优索引广义正交匹配追踪的非正交多址系统多用户检测[J]. 电子与信息学报, 2020, 42(3): 621-628. doi: 10.11999/JEIT190270
Bin SHEN, Hebiao WU, Taiping CUI, Qianbin CHEN. An Optimal Number of Indices Aided gOMP Algorithm for Multi-user Detection in NOMA System[J]. Journal of Electronics & Information Technology, 2020, 42(3): 621-628. doi: 10.11999/JEIT190270
Citation: Bin SHEN, Hebiao WU, Taiping CUI, Qianbin CHEN. An Optimal Number of Indices Aided gOMP Algorithm for Multi-user Detection in NOMA System[J]. Journal of Electronics & Information Technology, 2020, 42(3): 621-628. doi: 10.11999/JEIT190270

基于最优索引广义正交匹配追踪的非正交多址系统多用户检测

doi: 10.11999/JEIT190270
基金项目: 国家自然科学基金(61571073)
详细信息
    作者简介:

    申滨:男,1978年生,教授,研究方向为认知无线电、大规模MIMO等

    吴和彪:男,1994年生,硕士生,研究方向为免调度NOMA多用户检测

    崔太平:男,1981年生,讲师,研究方向为认知无线电、车联网等

    陈前斌:男,1967年生,教授、博士生导师,研究方向为下一代网络、个人通信等

    通讯作者:

    申滨 shenbin@cqupt.edu.cn

  • 中图分类号: TN929.5

An Optimal Number of Indices Aided gOMP Algorithm for Multi-user Detection in NOMA System

Funds: The National Nature Science Foundation of China (61571073)
  • 摘要:

    作为5G的关键技术之一,非正交多址(NOMA)通过非正交方式访问无线通信资源,以实现提高频谱利用率、增加用户连接数的目的。该文提出将压缩感知(CS)及广义正交匹配追踪(gOMP)算法引入上行免调度NOMA系统,从而增强NOMA系统活跃用户检测及数据接收的性能。通过每次迭代识别多个索引,gOMP算法实际上是传统的正交匹配追踪(OMP)算法的扩展。为了获得最优性能,研究分析了在gOMP算法信号重构的每次迭代中所应选择的最优索引数目。仿真结果表明:与其它的贪婪追踪算法及梯度投影稀疏重构(GPSR)算法相比,最优索引gOMP算法具有更优异的信号重构性能;并且,对于不同的活跃用户数或过载率等参数配置的NOMA系统,均表现出最优的多用户检测性能。

  • 图  1  稀疏度和索引数目对常数$\delta $的影响

    图  2  稀疏度对gOMP精确重构概率的影响

    图  3  稀疏度对不同算法精确重构概率的影响

    图  4  取不同索引数目时,gOMP算法的BER性能

    图  5  6种贪婪算法的BER性能

    图  6  5种多用户检测算法BER性能对比

    图  7  活跃用户数对BER性能的影响

    图  8  过载率对BER性能的影响

    表  1  最优索引gOMP检测算法

     算法1 最优索引gOMP检测算法
     输入 ${{y}}$, ${{H}}$, $S$, ${C_{{\rm{opt}}}}$.
     初始化:${{{r}}^0} = {{y}}$,${{{\varGamma}} ^0} = \varnothing $,$t = 0$.
     (1) While ${\left\| {{{{r}}^t}} \right\|_2} > e$ 且$t \le S$ do
     (2) $t = t + 1$;
     (3) $\eta {\rm{(}}i{\rm{)}} = \mathop {{\rm{argmax}}}\limits_{j:j \in \varOmega \backslash {\rm{\{ }}\eta {\rm{(}}i - 1{\rm{)}}, \cdots ,\eta {\rm{(2)}},\eta {\rm{(}}1{\rm{)\} }}} \left| { < {{{r}}^{t - 1}},{{{\varphi}} _j} > } \right|$;
     (4) ${{{\varGamma}} ^t} = {{{\varGamma}} ^{t - 1}} \cup {\rm{\{ }}\eta {\rm{(1),}}\eta {\rm{(2),}} ··· ,\eta {\rm{(}}{C_{{\rm{opt}}}}{\rm{)\} }}$;
     (5) ${\hat {{x} }_{ { {{\varGamma} } ^t} } } = \mathop { {\rm{argmin} } }\limits_{ u} {\left\| { {{y} } - { {{H} }_{ { {{\varGamma} } ^t} } }{{u} } } \right\|_2} = {{H} }_{ { {{\varGamma} } ^t} }^{\rm{† } }{{y} }$;
     (6) ${{{r}}^t} = {{y}} - {{{H}}_{{{{\varGamma}} ^t}}}{\hat {{x}}_{{{{\varGamma}} ^t}}}$
       end while
     输出 ${\hat {{x} }_{ { {{\varGamma} } ^t} } } = \mathop { {\rm{argmin} } }\limits_{ u} {\left\| { {{y} } - { {{H} }_{ { {{\varGamma} } ^t} } }{{u} } } \right\|_2}$
    下载: 导出CSV
  • OSSEIRAN A, BOCCARDI F, BRAUN V, et al. Scenarios for 5G mobile and wireless communications: The vision of the METIS project[J]. IEEE Communications Magazine, 2014, 52(5): 26–35. doi: 10.1109/MCOM.2014.6815890
    DAI Linglong, WANG Bichai, DING Zhiguo, et al. A survey of non-orthogonal multiple access for 5G[J]. IEEE Communications Surveys & Tutorials, 2018, 20(3): 2294–2323. doi: 10.1109/COMST.2018.2835558
    DAI Linglong, WANG Bichai, YUAN Yifei, et al. Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends[J]. IEEE Communications Magazine, 2015, 53(9): 74–81. doi: 10.1109/MCOM.2015.7263349
    ISLAM S M R, AVAZOV N, DOBRE O A, et al. Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges[J]. IEEE Communications Surveys & Tutorials, 2017, 19(2): 721–742. doi: 10.1109/COMST.2016.2621116
    HONG J P, CHOI W, and RAO B D. Sparsity controlled random multiple access with compressed sensing[J]. IEEE Transactions on Wireless Communications, 2015, 14(2): 998–1010. doi: 10.1109/TWC.2014.2363165
    CHOI J W, SHIM B, DING Yacong, et al. Compressed sensing for wireless communications: Useful tips and tricks[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1527–1550. doi: 10.1109/COMST.2017.2664421
    李燕龙, 陈晓, 詹德满, 等. 非正交多址接入中稀疏多用户检测方法[J]. 西安电子科技大学学报: 自然科学版, 2017, 44(3): 151–156. doi: 10.3969/j.issn.1001-2400.2017.03.026

    LI Yanlong, CHEN Xiao, ZHEN Deman, et al. Method of sparse multi-user detection in non-orthogonal multiple access[J]. Journal of Xidian University, 2017, 44(3): 151–156. doi: 10.3969/j.issn.1001-2400.2017.03.026
    SHIM B and SONG B. Multiuser detection via compressive sensing[J]. IEEE Communications Letters, 2012, 16(7): 972–974. doi: 10.1109/LCOMM.2012.050112.111980
    TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666. doi: 10.1109/TIT.2007.909108
    NEEDELL D and VERSHYNIN R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 310–316. doi: 10.1109/JSTSP.2010.2042412
    DAI Wei and MILENKOVIC O. Subspace pursuit for compressive sensing signal reconstruction[J]. IEEE Transactions on Information Theory, 2009, 55(5): 2230–2249. doi: 10.1109/TIT.2009.2016006
    NEEDELL D and TROPP J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 2009, 26(3): 301–321. doi: 10.1016/j.acha.2008.07.002
    WANG Jian, KWON S, and SHIM B. Generalized orthogonal matching pursuit[J]. IEEE Transactions on Signal Processing, 2012, 60(12): 6202–6216. doi: 10.1109/TSP.2012.2218810
    WANG Bichai, DAI Linglong, ZHANG Yuan, et al. Dynamic compressive sensing-based multi-user detection for uplink grant-free NOMA[J]. IEEE Communications Letters, 2016, 20(11): 2320–2323. doi: 10.1109/LCOMM.2016.2602264
    FIGUEIREDO M A T, NOWAK R D, and WRIGHT S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586–597. doi: 10.1109/JSTSP.2007.910281
    WANG Bichai, DAI Linglong, MIR T, et al. Joint user activity and data detection based on structured compressive sensing for NOMA[J]. IEEE Communications Letters, 2016, 20(7): 1473–1476. doi: 10.1109/LCOMM.2016.2560180
    WEI Chao, LIU Huaping, ZHANG Zaichen, et al. Approximate message passing-based joint user activity and data detection for NOMA[J]. IEEE Communications Letters, 2017, 21(3): 640–643. doi: 10.1109/LCOMM.2016.2624297
    CIRIK A C, BALASUBRAMANYA N M, and LAMPE L. Multi-user detection using ADMM-based compressive sensing for uplink grant-free NOMA[J]. IEEE Wireless Communications Letters, 2018, 7(1): 46–49. doi: 10.1109/LWC.2017.2752165
    ZHU Hao and GIANNAKIS G B. Exploiting sparse user activity in multiuser detection[J]. IEEE Transactions on Communications, 2011, 59(2): 454–465. doi: 10.1109/TCOMM.2011.121410.090570
    WANG Jian and SHIM B. Exact recovery of sparse signals using orthogonal matching pursuit: How many iterations do we need?[J]. IEEE Transactions on Signal Processing, 2016, 64(16): 4194–4202. doi: 10.1109/TSP.2016.2568162
    孙娜, 刘继文, 肖东亮. 基于BFGS拟牛顿法的压缩感知SL0重构算法[J]. 电子与信息学报, 2018, 40(10): 2408–2414. doi: 10.11999/JEIT170813

    SUN Na, LIU Jiwen, and XIAO Dongliang. SL0 reconstruction algorithm for compressive sensing based on BFGS quasi newton method[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2408–2414. doi: 10.11999/JEIT170813
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  3162
  • HTML全文浏览量:  965
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-18
  • 修回日期:  2019-07-28
  • 网络出版日期:  2019-07-31
  • 刊出日期:  2020-03-19

目录

    /

    返回文章
    返回