Magnetic Dipole Object Tracking Algorithm Based on Magnetometer Array in Geomagnetic Background
-
摘要:
针对地磁背景下磁偶极子目标跟踪过程中存在的地磁干扰与模型非线性的问题,该文提出一种基于差量磁异常的蒙特卡洛卡尔曼滤波(MCKF)跟踪方法。新的跟踪方法以传感器阵列测量磁场的差量作为观测信号,并利用蒙特卡洛卡尔曼滤波算法解决模型的非线性问题,实现磁偶极子目标的实时跟踪。通过仿真跟踪实验,结果表明该文算法较传统的扩展或无迹卡尔曼滤波算法在稳定跟踪过程中对目标特征参数的估计更精确;通过地磁背景跟踪实验,结果验证了该文算法较传统算法在低信噪比下的性能优势。
Abstract:In order to solve the problem of geomagnetic interference and model nonlinearity in the tracking process of magnetic dipole under geomagnetic background, Monte Carlo Kalman Filter (MCKF) tracking method based on differential magnetic anomaly is proposed in this paper. The new tracking method takes the difference of magnetic field measured by sensor array as the observation signal, and uses Monte Carlo Kalman Filtering (MCKF) algorithm to solve the nonlinear problem of the model to realize the real-time tracking of magnetic dipole targets. The simulation results show that the proposed method is more accurate than the traditional Extended Kalman Filter (EKF) or Untracked Kalman Filter (UKF) in the stable tracking process. The results of real geomagnetic background tracking experiments show that the proposed algorithm has better tracking performance under low SNR.
-
表 1 不同跟踪算法各方向投影轨迹跟踪误差(m)
跟踪算法 时间区间 1~40点 41~80点 81~120点 120~160点 160~200点 x方向 EKF 0.0651 0.0127 0.0023 0.0057 0.0409 UKF 0.0689 0.0127 0.0024 0.0057 0.0410 MCKF 0.2143 0.0153 0.0024 0.0039 0.0218 y方向 EKF 0.0491 0.0113 0.0059 0.0100 0.0319 UKF 0.0512 0.0112 0.0061 0.0096 0.0318 MCKF 0.1237 0.0115 0.0042 0.0061 0.0158 z方向 EKF 0.0430 0.0089 0.0021 0.0042 0.0163 UKF 0.0436 0.0088 0.0022 0.0041 0.0164 MCKF 0.0456 0.0086 0.0022 0.0043 0.0198 表 2 不同蒙特卡洛样本点数的算法各方向投影轨迹跟踪误差(m)
表2(a) x方向 蒙特卡洛样本点数 时间区间 1~40 41~80 81~120 120~160 160~200 50 0.2817 0.0242 0.0035 0.0052 0.0264 100 0.2481 0.0194 0.0030 0.0046 0.0231 200 0.2143 0.0153 0.0024 0.0039 0.0218 400 0.2316 0.0159 0.0023 0.0039 0.0212 表2(b) y方向 蒙特卡洛样本点数 时间区间 1~40 41~80 81~120 120~160 160~200 50 0.1658 0.0168 0.0049 0.0069 0.0192 100 0.1442 0.0141 0.0047 0.0063 0.0166 200 0.1237 0.0115 0.0042 0.0061 0.0158 400 0.1346 0.0118 0.0043 0.0059 0.0151 表2(c) z方向 蒙特卡洛样本点数 时间区间 1~40 41~80 81~120 120~160 160~200 50 0.0569 0.0124 0.0031 0.0053 0.0242 100 0.0496 0.0105 0.0026 0.0046 0.0202 200 0.0456 0.0086 0.0022 0.0043 0.0198 400 0.0466 0.0090 0.0021 0.0042 0.0195 -
IOANNIDIS G. Identification of a ship or submarine from its magnetic signature[J]. IEEE Transactions on Aerospace and Electronic Systems, 1977, AES-13(3): 327–329. doi: 10.1109/TAES.1977.308404 FAGGIONI O, SOLDANI M, GABELLONE A, et al. Undersea harbour defence: A new choice in magnetic networks[J]. Journal of Applied Geophysics, 2010, 72(1): 46–56. doi: 10.1016/j.jappgeo.2010.07.001 ZHANG Mengying, WANG Hua, GE Lin, et al. Automatic search algorithms for near-field ferromagnetic targets based on magnetic anomaly detection[J]. Mathematical Problems in Engineering, 2018, 2018: 2130236. doi: 10.1155/2018/2130236 SHEINKER A, LERNER B, SALOMONSKI N, et al. Localization and magnetic moment estimation of a ferromagnetic target by simulated annealing[J]. Measurement Science and Technology, 2007, 18(11): 3451–3457. doi: 10.1088/0957-0233/18/11/027 SHEINKER A, SALOMONSKI N, GINZBURG B, et al. Remote sensing of a magnetic target utilizing population based incremental learning[J]. Sensors and Actuators A: Physical, 2008, 143(2): 215–223. doi: 10.1016/j.sna.2007.10.064 YANG Wan’an, HU Chao, LI Mao, et al. A new tracking system for three magnetic objectives[J]. IEEE Transactions on Magnetics, 2010, 46(12): 4023–4029. doi: 10.1109/tmag.2010.2076823 GAO Xiang, YAN Shenggang, and LI Bi. A novel method of localization for moving objects with an alternating magnetic field[J]. Sensors, 2017, 17(4): 923(1–12). doi: 10.3390/s17040923 WANG Chen, QU Xiaodong, ZHANG Xiaojuan, et al. A fast calibration method for magnetometer array and the application of ferromagnetic target localization[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(7): 1743–1750. doi: 10.1109/TIM.2017.2668558 贾文抖, 林春生, 陈春行, 等. 针对磁目标定位失效的改进欧拉定位方法[J]. 海军工程大学学报, 2018, 30(3): 37–42.JIA Wendou, LIN Chunsheng, CHEN Chunxing, et al. Improved Euler method for preventing failure of positioning magnetic target[J]. Journal of Naval University of Engineering, 2018, 30(3): 37–42. WIEGERT R and OESCHGER J. Generalized magnetic gradient contraction based method for detection, localization and discrimination of underwater mines and unexploded ordnance[C]. The OCEANS 2005 MTS/IEEE, Washington, USA, 2005: 1325–1332. BIRSAN M. Non-linear Kalman filters for tracking a magnetic dipole[R]. Defence R&D Canada, Atlantic, 2005. BIRSAN M. Unscented particle filter for tracking a magnetic dipole target[C]. The OCEANS 2005 MTS/IEEE, Washington, USA, 2005, 1656–1659. KOZICK R J and SADLER B M. Algorithms for tracking with an array of magnetic sensors[C]. The 5th IEEE Sensor Array and Multichannel Signal Processing Workshop, Darmstadt, Germany, 2008: 423–427. ALHMIEDAT T, ABU TALEB A, and BSOUL M. A study on threads detection and tracking systems for military applications using WSNs[J]. International Journal of Computer Applications, 2012, 40(15): 12–18. doi: 10.5120/5055-7347 张朝阳, 肖昌汉, 高俊吉, 等. 磁性物体磁偶极子模型适用性的试验研究[J]. 应用基础与工程科学学报, 2010, 18(5): 862–868. doi: 10.3969/j.issn.1005-0930.2010.05.016ZHANG Zhaoyang, XIAO Changhan, GAO Junji, et al. Experiment research of magnetic dipole model applicability for a magnetic object[J]. Journal of Basic Science and Engineering, 2010, 18(5): 862–868. doi: 10.3969/j.issn.1005-0930.2010.05.016 于振涛, 吕俊伟, 张本涛. 基于海底磁力仪阵列的磁性目标定位方法[J]. 武汉理工大学学报, 2012, 34(6): 131–135. doi: 10.3963/j.issn.1671-4431.2012.06.028YU Zhentao, LÜ Junwei, and ZHANG Bentao. A method to localize magnetic target based on a seabed array of magnetometers[J]. Journal of Wuhan University of Technology, 2012, 34(6): 131–135. doi: 10.3963/j.issn.1671-4431.2012.06.028 吴志东, 周穗华, 陈志毅. 基于非线性滤波算法的磁偶极子跟踪[J]. 鱼雷技术, 2013, 21(4): 262–267. doi: 10.3969/j.issn.1673-1948.2013.04.006WU Zhidong, ZHOU Suihua, and CHEN Zhiyi. Magnetic dipole tracking based on nonlinear filtering algorithm[J]. Torpedo Technology, 2013, 21(4): 262–267. doi: 10.3969/j.issn.1673-1948.2013.04.006 高俊吉, 刘大明, 周国华. 水中非合作运动磁性目标跟踪及参数估计[J]. 哈尔滨工程大学学报, 2013, 34(9): 1124–1130. doi: 10.3969/j.issn.1006-7043.201209033GAO Junji, LIU Daming, and ZHOU Guohua. Study on the tracking and parameter estimating of unknown moving magnetism objects[J]. Journal of Harbin Engineering University, 2013, 34(9): 1124–1130. doi: 10.3969/j.issn.1006-7043.201209033 张宏欣, 周穗华, 吴志东, 等. 基于改进粗糙化粒子滤波的磁偶极子跟踪[J]. 华中科技大学学报: 自然科学版, 2014, 42(9): 76–80. doi: 10.13245/j.hust.140917ZHANG Hongxin, ZHOU Suihua, WU Zhidong, et al. Magnetic dipole localization based on improved roughening particle filter[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2014, 42(9): 76–80. doi: 10.13245/j.hust.140917 周穗华, 张文成, 张宏欣. 基于混合卡尔曼滤波的磁偶极子目标跟踪[J]. 水雷战与舰船防护, 2015, 23(4): 7–11.ZHOU Suihua, ZHANG Wencheng, and ZHANG Hongxin. Magnetic dipole target tracking based on mixed kalman filter[J]. Mine Warfare &Ship Self-defence, 2015, 23(4): 7–11. 吴垣甫, 孙跃. 基于递推更新卡尔曼滤波的磁偶极子目标跟踪[J]. 北京航空航天大学学报, 2017, 43(9): 1805–1812. doi: 10.13700/j.bh.1001-5965.2016.0694WU Yuanfu and SUN Yue. Magnetic dipole target tracking based on recursive update Kalman filter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9): 1805–1812. doi: 10.13700/j.bh.1001-5965.2016.0694 张宏欣, 周穗华, 张伽伟. 磁偶极子跟踪的渐进贝叶斯滤波方法[J]. 自动化学报, 2017, 43(5): 822–834. doi: 10.16383/j.aas.2017.c160052ZHANG Hongxin, ZHOU Suihua, and ZHANG Jiawei. A progressive bayesian filtering approach to magnetic dipole tracking[J]. Acta Automatica Sinica, 2017, 43(5): 822–834. doi: 10.16383/j.aas.2017.c160052 张宏欣. 磁性目标跟踪的多模型自适应滤波方法[J]. 数字海洋与水下攻防, 2018, 1(2): 57–62.ZHANG Hongxin. Multiple-model adaptive filtering method for magnetic target tracking[J]. Digital Ocean &Underwater Warfare, 2018, 1(2): 57–62.