高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

博弈条件下雷达波形设计策略研究

李伟 王泓霖 郑家毅 徐建业 赵俊龙 邹鲲

李伟, 王泓霖, 郑家毅, 徐建业, 赵俊龙, 邹鲲. 博弈条件下雷达波形设计策略研究[J]. 电子与信息学报, 2019, 41(11): 2654-2660. doi: 10.11999/JEIT190114
引用本文: 李伟, 王泓霖, 郑家毅, 徐建业, 赵俊龙, 邹鲲. 博弈条件下雷达波形设计策略研究[J]. 电子与信息学报, 2019, 41(11): 2654-2660. doi: 10.11999/JEIT190114
Wei LI, Honglin WANG, Jiayi ZHENG, Jianye XU, Junlong ZHAO, Kun ZOU. Research on Radar Waveform Design Strategy under Game Condition[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2654-2660. doi: 10.11999/JEIT190114
Citation: Wei LI, Honglin WANG, Jiayi ZHENG, Jianye XU, Junlong ZHAO, Kun ZOU. Research on Radar Waveform Design Strategy under Game Condition[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2654-2660. doi: 10.11999/JEIT190114

博弈条件下雷达波形设计策略研究

doi: 10.11999/JEIT190114
基金项目: 国家自然科学基金(61571456),航空科学基金(20160196001)
详细信息
    作者简介:

    李伟:男,1978年生,副教授,研究方向为新体制雷达信号处理

    王泓霖:男,1995年生,博士生,研究方向为雷达及电子战系统

    郑家毅:男,1991年生,助理工程师,研究方向为雷达信号处理

    徐建业:男,1992年生,博士生,研究方向为信道编码及深度学习

    赵俊龙:男,1995年生,硕士生,研究方向为雷达信号处理、雷达波形设计

    邹鲲:男,1976年生,副教授,研究方向为雷达信号处理、统计信号处理、复杂电磁环境下的目标探测等

    通讯作者:

    王泓霖 wanghonglin821@outlook.com

  • 中图分类号: TN951

Research on Radar Waveform Design Strategy under Game Condition

Funds: The National Natural Science Foundation of China (61571456), The Aeronautical Science Foundation of China (20160196001)
  • 摘要: 为提高电子战中弹载雷达检测性能,该文提出基于纳什均衡的雷达波形设计方法。首先建立电子战条件下雷达与干扰信号博弈模型,基于最大化信干噪比(SINR)准则,分别设计了雷达和干扰的波形策略;然后通过数学推导论证了博弈纳什均衡解的存在性,设计了一种重复剔除严格劣势的多次迭代注水方法来实现纳什均衡;通过二步注水法推导了非均衡的maxmin优化方案;最后通过仿真实验测试不同策略下雷达检测性能。仿真结果证明,基于纳什均衡的雷达信号设计有助于提升博弈条件下雷达检测性能,对比未博弈时,雷达检测概率最高可提升12.02%,较maxmin策略最高可提升3.82%,证明所设计的纳什均衡策略更接近帕累托最优。
  • 图  1  弹载雷达发射-接收信号模型

    图  2  不同注水策略下SINR变化情况

    图  3  迭代周期内SINR变化

    图  4  信号功率分配策略

    图  5  雷达波形功率谱设计

    图  6  纳什均衡雷达功率分配策略

    图  7  maxmin雷达功率分配策略

    图  8  不同策略间雷达检测概率变化

    表  1  迭代注水算法

     (1) 初始化双方策略) $\left| {S({f_k})} \right| = {\left| {S({f_k})} \right|_0}$, $J({f_k}) = J{({f_k})_0}$
     (2) 最大化雷达效益$\mathop {\max }\limits_{{\rm{SINR}}} \left( {{{\left| {S({f_k})} \right|}^*},\lambda } \right)$
     (3) 更新雷达策略$\left| {S({f_k})} \right| = {\left| {S({f_k})} \right|^ * }$
     (4) 最大化干扰效益$\mathop {\min }\limits_{{\rm{SINR}}} \left( {J{{({f_k})}^*},\gamma } \right)$
     (5) 更新干扰策略$J({f_k}) = J{({f_k})^ * }$
     (6) 重复步骤(2)—步骤(5)直到${\left| {S({f_k})} \right|^ * }$与$J{({f_k})^ * }$保持不变
    下载: 导出CSV

    表  2  各频带功率分配策略及性能

    策略子带1(W)子带2(W)子带3(W)子带4(W)子带5(W)SINR(dB)检测概率(%)运算时间(s)
    纳什均衡雷达7.03137.531218.232139.521627.68829.76152.721.537
    干扰6.39166.526118.062440.617228.4126
    maxmin雷达6.03374.344312.872040.547036.20279.55449.310.485
    干扰6.25897.710718.357339.650328.0359
    下载: 导出CSV
  • HAYKIN S. Cognitive radar: A way of the future[J]. IEEE Signal Processing Magazine, 2006, 23(1): 30–40. doi: 10.1109/MSP.2006.1593335
    翁木云, 郑家毅, 李伟, 等. 低RCS目标检测的制导雷达波形优化方法[J]. 华中科技大学学报: 自然科学版, 2019, 47(2): 41–46. doi: 10.13245/j.hust.190208

    WENG Muyun, ZHENG Jiayi, LI Wei, et al. Guidance radar waveform optimization method for low RCS target detection under interference conditions[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2019, 47(2): 41–46. doi: 10.13245/j.hust.190208
    BELL M R. Information theory and radar waveform design[J]. IEEE Transactions on Information Theory, 1993, 39(5): 1578–1597. doi: 10.1109/18.259642
    PILLAI S U, OH H S, YOULA D C, et al. Optimal transmit-receiver design in the presence of signal-dependent interference and channel noise[J]. IEEE Transactions on Information Theory, 2000, 46(2): 577–584. doi: 10.1109/18.825822
    KAY S. Optimal signal design for detection of Gaussian point targets in stationary Gaussian clutter/reverberation[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1): 31–41. doi: 10.1109/jstsp.2007.897046
    ROMERO R A, BAE J, and GOODMAN N A. Theory and application of SNR and mutual information matched illumination waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 912–927. doi: 10.1109/TAES.2011.5751234
    AUBRY A, DEMAIO A, FARINA A, et al. Knowledge-aided (potentially cognitive) transmit signal and receive filter design in signal-dependent clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 93–117. doi: 10.1109/TAES.2013.6404093
    WU Linlong, BABU P, and PALOMAR D P. Transmit waveform/receive filter design for MIMO radar with multiple waveform constraints[J]. IEEE Transactions on Signal Processing, 2018, 66(6): 1526–1540. doi: 10.1109/TSP.2017.2787115
    IMANI S, NAYEBI M M, and GHORASHI S A. Colocated MIMO radar SINR maximization under ISL and PSL constraints[J]. IEEE Signal Processing Letters, 2018, 25(3): 422–426. doi: 10.1109/LSP.2018.2796603
    BUTT F A, NAQVI I H, and RIAZ U. Hybrid phased-MIMO radar: A novel approach with optimal performance under electronic countermeasures[J]. IEEE Communications Letters, 2018, 22(6): 1184–1187. doi: 10.1109/LCOMM.2018.2828408
    WANG Li, WU Huaqing, and STÜBER G L. Cooperative jamming-aided secrecy enhancement in P2P communications with social interaction constraints[J]. IEEE Transactions on Vehicular Technology, 2017, 66(2): 1144–1158. doi: 10.1109/TVT.2016.2553121
    GUAN Yanpeng and GE Xiaohua. Distributed secure estimation over wireless sensor networks against random multichannel jamming attacks[J]. IEEE Access, 2017, 5: 10858–10870. doi: 10.1109/ACCESS.2017.2713807
    WANG Lulu, WANG Hongqiang, WONG K K, et al. Minimax robust jamming techniques based on signal-to-interference-plus-noise ratio and mutual information criteria[J]. IET Communications, 2014, 8(10): 1859–1867. doi: 10.1049/iet-com.2013.1054
    FENG Dejun, XU Letao, PAN Xiaoyi, et al. Jamming wideband radar using interrupted-sampling repeater[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1341–1354. doi: 10.1109/TAES.2017.2670958
    SONG Xiufeng, WILLETT P, ZHOU Shengli, et al. The MIMO radar and jammer games[J]. IEEE Transactions on Signal Processing, 2012, 60(2): 687–699. doi: 10.1109/TSP.2011.2169251
    GAO Hao, WANG Jian, JIANG Chunxiao, et al. Equilibrium between a statistical MIMO radar and a jammer[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 461–466. doi: 10.1109/RADAR.2015.7131043.
    LAN Xing, LI Wei, WANG Xingliang, et al. MIMO radar and target stackelberg game in the presence of clutter[J]. IEEE Sensors Journal, 2015, 15(12): 6912–6920. doi: 10.1109/JSEN.2015.2466812
    KAY S M and LUO Pengfei. Fundamentals of Statistical Signal Processing: Estimation and Detection Theory[M]. Beijing: Publishing House of Electronics Industry, 2014: 425–445.
    邹鲲. 认知雷达的未知目标检测[J]. 电子与信息学报, 2018, 40(1): 166–172. doi: 10.11999/JEIT170254

    ZOU Kun. Unknown target detection for cognitive radar[J]. Journal of Electronics &Information Technology, 2018, 40(1): 166–172. doi: 10.11999/JEIT170254
    CARABALLO M A, MÁRMOL A M, MONROY L, et al. Cournot competition under uncertainty: Conservative and optimistic equilibria[J]. Review of Economic Design, 2015, 19(2): 145–165. doi: 10.1007/s10058-015-0171-z
    FUDENBERG D and TIROLE J. Game Theory[M]. Cambridge: MIT Press, 1991: 18–26.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  2730
  • HTML全文浏览量:  876
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-26
  • 修回日期:  2019-09-01
  • 网络出版日期:  2019-09-05
  • 刊出日期:  2019-11-01

目录

    /

    返回文章
    返回