高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于极化特征参数和极化干涉最优参数的改进四元素分解方法

王宇 禹卫东 刘秀清

王宇, 禹卫东, 刘秀清. 基于极化特征参数和极化干涉最优参数的改进四元素分解方法[J]. 电子与信息学报, 2019, 41(12): 2881-2888. doi: 10.11999/JEIT190108
引用本文: 王宇, 禹卫东, 刘秀清. 基于极化特征参数和极化干涉最优参数的改进四元素分解方法[J]. 电子与信息学报, 2019, 41(12): 2881-2888. doi: 10.11999/JEIT190108
Yu WANG, Weidong YU, Xiuqing LIU. An Improved Four-component Decomposition Method Based on the Characteristic of Polarization and the Optimal Parameters of PolInSAR[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2881-2888. doi: 10.11999/JEIT190108
Citation: Yu WANG, Weidong YU, Xiuqing LIU. An Improved Four-component Decomposition Method Based on the Characteristic of Polarization and the Optimal Parameters of PolInSAR[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2881-2888. doi: 10.11999/JEIT190108

基于极化特征参数和极化干涉最优参数的改进四元素分解方法

doi: 10.11999/JEIT190108
详细信息
    作者简介:

    王宇:女,1993年生,博士生,研究方向为极化与极化干涉合成孔径雷达技术研究

    禹卫东:男,1969年生,博士生导师,研究方向为合成孔径雷达信号处理技术

    刘秀清:女,1974年生,硕士生导师,研究方向为极化与极化信息处理

    通讯作者:

    王宇 wangyu370705@163.com

  • 中图分类号: TN958

An Improved Four-component Decomposition Method Based on the Characteristic of Polarization and the Optimal Parameters of PolInSAR

  • 摘要: 雷达目标的后向散射对目标姿态与雷达视线的相对几何关系十分敏感,同一目标相对于雷达视线的姿态不同时,散射特性十分不同。倾斜地表和倾斜建筑物等目标可能扭转后向散射回波的极化基,进而导致交叉极化分量过高,图像体散射成分过估计。该文针对图像体散射成分过估计的现象,提出一种基于极化特征参数($ H/{\alpha} $)和极化干涉相似性参数(PISP)的极化干涉分解方法。该方法充分考虑了散射体在雷达视线方向上的散射多样性,对不同取向的倾斜地表和倾斜建筑物等目标产生的交叉极化分量进行更好的适配,得到更好的分解结果。最后,利用由中国科学院电子学研究所获取的机载C波段全极化干涉数据验证该方法在极化干涉分解中的有效性。实验结果表明,该改进算法可以有效、正确地区分地物散射特性。
  • 图  1  本文所提算法流程框图

    图  2  观察场景的光学图及伪彩图

    图  3  不同分解算法得到的分解结果伪彩图

    图  4  典型区域1的4种算法分解结果细节切片图

    图  5  典型区域2的4种算法分解结果细节切片图

    图  6  典型区域2的4种算法二面角散射像素点提取结果

    图  7  切线散射成分统计结果

    表  1  散射功率量化统计

    分解方法${P_{\rm{v}}}$${P_{\rm{s}}}$${P_{\rm{d}}}$${P_{\rm{c}}}$
    传统的四元素分解算法0.86640.02270.10380.0071
    扩展的四元素分解算法0.83380.02580.13090.0095
    改进的四元素分解算法0.75630.02670.20870.0083
    本文方法0.73040.03260.22830.0087
    下载: 导出CSV

    表  2  典型区域1散射功率量化统计

    分解方法${P_{\rm{v}}}$${P_{\rm{s}}}$${P_{\rm{d}}}$${P_{\rm{c}}}$
    传统的四元素分解算法0.86640.02270.10280.0081
    扩展的四元素分解算法0.73380.02580.22890.0115
    改进的四元素分解算法0.75630.02670.20770.0093
    本文方法0.73040.03260.22640.0106
    下载: 导出CSV

    表  3  典型区域2散射功率量化统计

    分解方法${P_{\rm{v}}}$${P_{\rm{s}}}$${P_{\rm{d}}}$${P_{\rm{c}}}$
    传统的四元素分解算法0.77370.03300.18470.0086
    扩展的四元素分解算法0.79090.03970.16150.0079
    改进的四元素分解算法0.72830.05080.21050.0104
    本文方法0.71480.05250.22160.0111
    下载: 导出CSV

    表  4  典型区域2分解算法准确性统计结果

    分解方法传统的四元素分解算法扩展的四元素分解算法改进的四元素分解算法本文方法二面角散射像素点个数
    提取得到的二面角散射像素点个数4798641571526125546263625
    提取准确性(%)75.4266.9182.6987.17
    下载: 导出CSV
  • CLOUDE S R and POTTIER E. An entropy based classification scheme for land applications of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1): 68–78. doi: 10.1109/36.551935
    SALEHI M, MAGHSOUDI Y, and MOHAMMADZADEH A. Assessment of the potential of H/A/Alpha decomposition for polarimetric interferometric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2440–2451. doi: 10.1109/TGRS.2017.2780195
    YAMAGUCHI Y, MORIYAMA T, ISHIDO M, et al. Four-component scattering model for polarimetric SAR image decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8): 1699–1706. doi: 10.1109/TGRS.2005.852084
    FREEMAN A and DURDEN S L. A three-component scattering model for polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 963–973. doi: 10.1109/36.673687
    QUAN Sinong, XIANG Deliang, XIONG Boli, et al. A hierarchical extension of general four-component scattering power decomposition[J]. Remote Sensing, 2017, 9(8): 856. doi: 10.3390/rs9080856
    SUN Xiang, SONG Hongjun, WANG R, et al. High-resolution polarimetric SAR image decomposition of urban areas based on a POA correction method[J]. Remote Sensing Letters, 2018, 9(4): 363–372. doi: 10.1080/2150704X.2017.1418989
    KUMAR A, PANIGRAHI R K, and DAS A. Three-component decomposition technique for hybrid-pol SAR data[J]. IET Radar, Sonar & Navigation, 2016, 10(9): 1569–1574. doi: 10.1049/iet-rsn.2015.0298
    XIANG Deliang, WANG Wei, TANG Tao, et al. Multiple-component polarimetric decomposition with new volume scattering models for PolSAR urban areas[J]. IET Radar, Sonar & Navigation, 2017, 11(3): 410–419. doi: 10.1049/iet-rsn.2016.0105
    CLOUDE S R and PAPATHANASSIOU K P. Polarimetric SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1551–1565. doi: 10.1109/36.718859
    CHEN Siwei, WANG Xuesong, LI Yongzhen, et al. Adaptive model-based polarimetric decomposition using PolInSAR coherence[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1705–1718. doi: 10.1109/TGRS.2013.2253780
    CHEN Siwei, OHKI M, SHIMADA M, et al. Deorientation effect investigation for model-based decomposition over oriented built-up areas[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2): 273–277. doi: 10.1109/LGRS.2012.2203577
    CHEN Siwei, WANG Xuesong, and SATO M. Uniform polarimetric matrix rotation theory and its applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4756–4770. doi: 10.1109/TGRS.2013.2284359
    陈思伟, 李永祯, 王雪松, 等. 极化SAR目标散射旋转域解译理论与应用[J]. 雷达学报, 2017, 6(5): 442–455. doi: 10.12000/JR17033

    CHEN Siwei, LI Yongzhen, WANG Xuesong, et al. Polarimetric SAR target scattering interpretation in rotation domain: Theory and application[J]. Journal of Radars, 2017, 6(5): 442–455. doi: 10.12000/JR17033
    MAURYA H and PANIGRAHI R K. Non-negative scattering power decomposition for PolSAR data interpretation[J]. IET Radar, Sonar & Navigation, 2018, 12(6): 593–602. doi: 10.1049/iet-rsn.2017.0581
    王春乐, 李光廷, 禹卫东. 改进的极化SAR图像三分量分解方法[J]. 宇航学报, 2013, 34(7): 980–986. doi: 10.3873/j.issn.1000-1328.2013.06.013

    WANG Chunle, LI Guangting, and YU Weidong. Improved three-component scattering power decomposition for polarimetric SAR image[J]. Journal of Astronautics, 2013, 34(7): 980–986. doi: 10.3873/j.issn.1000-1328.2013.06.013
    XIE Qinghua, ZHU Jianjun, LOPEZ-SANCHEZ J M, et al. A modified general polarimetric model-based decomposition method with the simplified Neumann volume scattering model[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(8): 1229–1233. doi: 10.1109/LGRS.2018.2830503
    CHEN Siwei, WANG Xuesong, XIAO Shunping, et al. General polarimetric model-based decomposition for coherency matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1843–1855. doi: 10.1109/TGRS.2013.2255615
    ARII M, VAN ZYL J J, and KIM Y. A general characterization for polarimetric scattering from vegetation canopies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(9): 3349–3357. doi: 10.1109/tgrs.2010.2046331
    SATO A, YAMAGUCHI Y, SINGH G, et al. Four-component scattering power decomposition with extended volume scattering model[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2): 166–170. doi: 10.1109/lgrs.2011.2162935
    许丽颖, 李世强, 邓云凯, 等. 基于极化干涉相似性参数的四元素分解[J]. 电子与信息学报, 2014, 36(4): 908–914. doi: 10.3724/SP.J.1146.2013.01095

    XU Liying, LI Shiqiang, DENG Yunkai, et al. Four-component decomposition based on polarimetric interferometric similarity parameter[J]. Journal of Electronics &Information Technology, 2014, 36(4): 908–914. doi: 10.3724/SP.J.1146.2013.01095
    LATRACHE H, OUARZEDDINE M, and SOUISSI B. Improved model-based polarimetric decomposition using the POLINSAR similarity parameter[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI-B7: 847–850. doi: 10.5194/isprs-archives-XLI-B7-847-2016
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  2188
  • HTML全文浏览量:  1086
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-25
  • 修回日期:  2019-04-23
  • 网络出版日期:  2019-04-29
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回