高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多信源多中继编码协作系统准循环LDPC码的联合设计与性能分析

张顺外 魏琪

张顺外, 魏琪. 多信源多中继编码协作系统准循环LDPC码的联合设计与性能分析[J]. 电子与信息学报, 2019, 41(10): 2325-2333. doi: 10.11999/JEIT190069
引用本文: 张顺外, 魏琪. 多信源多中继编码协作系统准循环LDPC码的联合设计与性能分析[J]. 电子与信息学报, 2019, 41(10): 2325-2333. doi: 10.11999/JEIT190069
Shunwai ZHANG, Qi WEI. Joint Design of Quasi-cyclic Low Density Parity Check Codes and Performance Analysis of Multi-source Multi-relay Coded Cooperative System[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2325-2333. doi: 10.11999/JEIT190069
Citation: Shunwai ZHANG, Qi WEI. Joint Design of Quasi-cyclic Low Density Parity Check Codes and Performance Analysis of Multi-source Multi-relay Coded Cooperative System[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2325-2333. doi: 10.11999/JEIT190069

多信源多中继编码协作系统准循环LDPC码的联合设计与性能分析

doi: 10.11999/JEIT190069
基金项目: 国家自然科学基金(61501256),江苏省自然科学基金(BK20150857),南京邮电大学国自基金孵化项目(NY219073)
详细信息
    作者简介:

    张顺外:男,1987年生,博士,副教授,硕士生导师,研究方向为编码协作网络

    魏琪:男,1993年生,硕士生,研究方向为QC-LDPC码及协作通信技术

    通讯作者:

    张顺外 swzhang@njupt.edu.cn

  • 中图分类号: TN911.22

Joint Design of Quasi-cyclic Low Density Parity Check Codes and Performance Analysis of Multi-source Multi-relay Coded Cooperative System

Funds: The National Natural Science Foundation of China (61501256), The Natural Science Foundation of Jiangsu Province (BK20150857), The NUPTSF(NY219073)
  • 摘要: 为解决多信源多中继低密度奇偶校验(LDPC)码编码协作系统编码复杂度高、编码时延长的问题,该文引入一种特殊结构的LDPC码—基于生成矩阵的准循环LDPC码(QC-LDPC)码。该类码结合了QC-LDPC码与基于生成矩阵LDPC (G-LDPC)码的特点,可直接实现完全并行编码,极大地降低了中继节点的编码时延及编码复杂度。在此基础上,推导出对应于信源节点和中继节点采用的QC-LDPC码的联合校验矩阵,并基于最大公约数(GCD)定理联合设计该矩阵以消除其所有围长为4, 6(girth-4, girth-6)的短环。理论分析和仿真结果表明,在同等条件下该系统的误码率(BER)性能优于相应的点对点系统。仿真结果还表明,与采用显式算法构造QC-LDPC码或一般构造QC-LDPC码的协作系统相比,采用联合设计QC-LDPC码的系统均可获得更高的编码增益。
  • 图  1  多信源多中继QC-LDPC编码协作系统模型

    图  2  采用联合设计QC-LDPC码的编码协作系统与点对点系统的BER比较

    图  3  编码协作系统在不同信源节点和中继节点数目下的BER比较

    图  4  采用联合设计QC-LDPC码与一般构造QC-LDPC码的编码协作系统BER比较

    图  5  采用联合设计QC-LDPC码与显式构造QC-LDPC码的编码协作系统BER比较

    图  6  编码协作系统在不同调制方式和不同接收天线数目情况下的BER比较

    表  1  双信源双中继编码协作及对应点对点系统所采用的QC-LDPC码

    信源节点所采用的QC-LDPC码中继节点所采用的QC-LDPC码
    双信源双中继系统$ {{\text{H}}_{{S_{1}}}} = {{\text{H}}_{1(1100 \times 2200)}} $$ {{\text{H}}_{{R_{1}}}} = [ {{{\text{A}}_{1(1100 \times 2200)}}}\quad {{{\text{B}}_{1(1100 \times 2200)}}}\quad {\text{I}}_{(1100 \times 1100)}]$
    ${{\text{H}}_{{S_{2}}}} = {{\text{H}}_{2(1100 \times 2200)}}$$ {{\text{H}}_{{R_{2}}}} = [ {{{\text{A}}_{2(1100 \times 2200)}}}\quad {{{\text{B}}_{2(1100 \times 2200)}}}\quad {\text{I}}_{(1100 \times 1100)}] $
    Rate=1/2Rate=4/5
    点对点系统${{\text{H}}_S} = {{\text{H}}_{(2200 \times 6600)}}$
    Rate=1/3
    \
    下载: 导出CSV

    表  2  不同信源节点、中继节点数目情况下编码协作系统所采用的QC-LDPC码

    信源节点所采用的QC-LDPC码中继节点所采用的QC-LDPC码
    双信源双中继$ {{\text{H}}_{{S_{1}}}} = {{\text{H}}_{1(1100 \times 2200)}} $$ { {\text{H} }_{ {R_{1} } } } = [\begin{array}{*{20}{c} } { { {\text{A} }_{1(1100 \times 2200)} } } & { { {\text{B} }_{1(1100 \times 2200)} } } & {\text{I} }_{(1100 \times 1100)} \end{array}] $
    $ {{\text{H}}_{{S_{2}}}} = {{\text{H}}_{2(1100 \times 2200)}} $$ { {\text{H} }_{ {R_{2} } } } = [\begin{array}{*{20}{c} } { { {\text{A} }_{2(1100 \times 2200)} } } & { { {\text{B} }_{2(1100 \times 2200)} } } & {\text{I}_{(1100 \times 1100)} } \end{array} ]$
    Rate=1/2Rate=4/5
    双信源单中继$ {{\text{H}}_{{S_{1}}}} = {{\text{H}}_{1(1100 \times 2200)}} $${ {\text{H} }_R} = [\begin{array}{*{20}{c} } { { {\text{A} }_{(1100 \times 2200)} } } & { { {\text{B} }_{(1100 \times 2200)} } } & {{\text{I}}_{(1100 \times 1100)} } \end{array} ]$
    $ {{\text{H}}_{{S_{2}}}} = {{\text{H}}_{2(1100 \times 2200)}} $
    Rate=1/2Rate=4/5
    单信源双中继${{\text{H}}_S} = {{\text{H}}_{1(1100 \times 2200)}}$$\begin{gathered} {{\text{H}}_{{R_{1}}}} = [\begin{array}{*{20}{c}} {{{\text{A}}_{1(1100 \times 2200)}}}&{{{\text{I}}_{(1100 \times 1100)}}} \end{array}] \\ {{\text{H}}_{{R_{2}}}} = [\begin{array}{*{20}{c}} {{{\text{A}}_{2(1100 \times 2200)}}}&{{{\text{I}}_{(1100 \times 1100)}}} \end{array}] \\ \end{gathered} $
    Rate=1/2Rate=2/3
    下载: 导出CSV

    表  3  采用一般构造QC-LDPC码的协作系统各节点所采用的码字

    信源节点所采用的QC-LDPC码中继节点所采用的QC-LDPC码
    双信源双中继${d_{\rm v}} = 2$, ${d_{\rm c}} = 4$
    B=550
    ${d_{\rm v}} = 2$, ${d_{\rm c}} = 10$
    B=550
    注:dv指每列“1”的个数,dc指每行“1”的个数
    下载: 导出CSV

    表  4  采用显式构造QC-LDPC码的协作系统所采用的码字

    信源节点所采用的QC-LDPC码中继节点所采用的QC-LDPC码
    双信源双中继${d_{\rm v}} = 2$, ${d_{\rm c}} = 3$
    B=730
    ${d_{\rm v}} = 2$, ${d_{\rm c}} = 8$
    B=730
    下载: 导出CSV
  • RYAN W E and LIN Shu. Channel Codes: Classical and Modern[M]. Cambridge: Cambridge University Press, 2009: 201–254.
    DEHGHAN A and BANIHASHEMI A H. On the tanner graph cycle distribution of random LDPC, random protograph-based LDPC, and random quasi-cyclic LDPC code ensembles[J]. IEEE Transactions on Information Theory, 2018, 64(6): 4438–4451. doi: 10.1109/TIT.2018.2805906
    贺文武, 夏巧桥, 邹炼. 基于变量节点更新的交替方向乘子法LDPC惩罚译码算法[J]. 电子与信息学报, 2018, 40(1): 95–101. doi: 10.11999/JEIT170358

    HE Wenwu, XIA Qiaoqiao, and ZOU Lian. Alternating direction method of multipliers LDPC penalized decoding algorithm based on variable node update[J]. Journal of Electronics &Information Technology, 2018, 40(1): 95–101. doi: 10.11999/JEIT170358
    LIU Yuanhua, NIU Xinliang, WANG Xinmei, et al. Design of quasi-cyclic LDPC codes based on Euclidean geometries[J]. Journal of Electronics(China) , 2010, 27(3): 340–344. doi: 10.1007/s11767-010-0348-0
    KARIMI M and BANIHASHEMI A H. Counting short cycles of quasi cyclic protograph LDPC codes[J]. IEEE Communications Letters, 2012, 16(3): 400–403. doi: 10.1109/lcomm.2012.020212.112311
    JIANG Xueqin and LEE M H. Large girth quasi-cyclic LDPC codes based on the Chinese remainder theorem[J]. IEEE Communications Letters, 2009, 13(5): 342–344. doi: 10.1109/lcomm.2009.082115
    袁建国, 梁梦琪, 尚晓娟. 基于Fibonacci数列对QC-LDPC码的一种新颖构造方法[J]. 激光杂志, 2016, 37(6): 37–40. doi: 10.14016/j.cnki.jgzz.2016.06.037

    YUAN Jianguo, LIANG Mengqi, and SHANG Xiaojuan. A novel construction method of QC-LDPC codes based on Fibonacci sequence[J]. Laser Journal, 2016, 37(6): 37–40. doi: 10.14016/j.cnki.jgzz.2016.06.037
    ESMAEILI M and GHOLAMI M. Maximum-girth slope-based quasi-cyclic (2, k≥5) low-density parity-check codes[J]. IET Communications, 2008, 2(10): 1251–1262. doi: 10.1049/iet-com:20080013
    VAN NGUYEN B, JUNG H, and KIM K. Physical layer security schemes for full-duplex cooperative systems: State of the art and beyond[J]. IEEE Communications Magazine, 2018, 56(11): 131–137. doi: 10.1109/MCOM.2017.1700588
    BANNOUR A, SACCHI C, and SUN Yichuang. MIMO-OFDM based energy harvesting cooperative communications using coalitional game algorithm[J]. IEEE Transactions on Vehicular Technology, 2017, 66(12): 11166–11179. doi: 10.1109/TVT.2017.2768622
    WANG Jieling, YU Quan, LI Zan, et al. Distributed space time block transmission and QRD based diversity detector in asynchronous cooperative communications systems[J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 5111–5125. doi: 10.1109/TVT.2018.2812901
    ZHANG Shunwai, YANG Fengfan, and SONG Rongfang. Energy-harvesting-based RA-coded cooperative MIMO: Codes design and performance analysis[J]. Digital Signal Processing, 2017, 60(2): 56–62. doi: 10.1016/j.dsp.2016.08.013
    MUGHAL S, YANG Fengfan, and UMAR R. Reed-Muller network coded-cooperation with joint decoding[J]. IEEE Communications Letters, 2019, 23(1): 24–27. doi: 10.1109/LCOMM.2018.2879101
    陈紫强, 欧阳缮, 肖海林. 解码前传半双工中继信道下协作LDPC 码设计[J]. 电子与信息学报, 2011, 33(11): 2610–2615. doi: 10.3724/SP.J.1146.2011.00323

    CHEN Ziqiang, OUYANG Shan, and XIAO Hailin. Cooperative LDPC codes design for decode-and-forward half-duplex relay channels[J]. Journal of Electronics &Information Technology, 2011, 33(11): 2610–2615. doi: 10.3724/SP.J.1146.2011.00323
    JANANI M, HEDAYAT A, HUNTER T E, et al. Coded cooperation in wireless communications: Space-time transmission and iterative decoding[J]. IEEE Transactions on Signal Processing, 2004, 52(2): 362–371. doi: 10.1109/TSP.2003.821100
    LI Zongyan, PENG Mugen, WU Zhanji, et al. Network coding scheme based on LDPC product codes in multiple-access relay system[C]. 2011 IEEE International Conference on Communications Workshops, Kyoto, Japan, 2011: 1–4.
    ZHANG Shunwai, YANG Fengfan, TANG Lei, et al. Joint design of QC-LDPC codes for coded cooperation system with joint iterative decoding[J]. International Journal of Electronics, 2016, 103(3): 384–405. doi: 10.1080/00207217.2015.1036374
    DU Bing and ZHANG Jun. Parity check network coding for wireless cooperative communications[J]. Chinese Journal of Electronics, 2010, 19(2): 339–344.
    张顺外. LDPC编码协作系统性能与码的设计研究[D]. [博士论文], 南京航空航天大学, 2013.

    ZHANG Shunwai. LDPC-coded cooperation: Performance studies and codes design[D]. [Ph.D. dissertation], Nanjing University of Aeronautics and Astronautics, 2013.
    ZHANG Shunwai, YANG Fengfan, and TANG Lei. Network-coding-based multisource multirelay LDPC-coded cooperative MIMO[J]. Transactions on Emerging Telecommunications Technologies, 2015, 26(3): 491–502. doi: 10.1002/ett.2659
    ZHANG Guohua, SUN Rong, and WANG Xinmei. Construction of girth-eight QC-LDPC codes from greatest common divisor[J]. IEEE Communications Letters, 2013, 17(2): 369–372. doi: 10.1109/LCOMM.2012.122012.122292
    ZHANG Jianhua and ZHANG Guohua. Deterministic girth-eight QC-LDPC codes with large column weight[J]. IEEE Communications Letters, 2014, 18(4): 656–659. doi: 10.1109/lcomm.2014.030114.132853
    张国华, 陈超, 杨洋, 等. Girth-8 (3,L)-规则QC-LDPC码的一种确定性构造方法[J]. 电子与信息学报, 2010, 32(5): 1152–1156. doi: 10.3724/SP.J.1146.2009.00838

    ZHANG Guohua, CHEN Chao, YANG Yang, et al. Girth-8 (3,L)-regular QC-LDPC codes based on novel deterministic design technique[J]. Journal of Electronics &Information Technology, 2010, 32(5): 1152–1156. doi: 10.3724/SP.J.1146.2009.00838
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  2968
  • HTML全文浏览量:  1198
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-24
  • 修回日期:  2019-06-16
  • 网络出版日期:  2019-06-26
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回