高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高层特征图组合及池化的高分辨率遥感图像检索

葛芸 马琳 江顺亮 叶发茂

葛芸, 马琳, 江顺亮, 叶发茂. 基于高层特征图组合及池化的高分辨率遥感图像检索[J]. 电子与信息学报, 2019, 41(10): 2487-2494. doi: 10.11999/JEIT190017
引用本文: 葛芸, 马琳, 江顺亮, 叶发茂. 基于高层特征图组合及池化的高分辨率遥感图像检索[J]. 电子与信息学报, 2019, 41(10): 2487-2494. doi: 10.11999/JEIT190017
Yun GE, Lin MA, Shunliang JIANG, Famao YE. The Combination and Pooling Based on High-level Feature Map for High-resolution Remote Sensing Image Retrieval[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2487-2494. doi: 10.11999/JEIT190017
Citation: Yun GE, Lin MA, Shunliang JIANG, Famao YE. The Combination and Pooling Based on High-level Feature Map for High-resolution Remote Sensing Image Retrieval[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2487-2494. doi: 10.11999/JEIT190017

基于高层特征图组合及池化的高分辨率遥感图像检索

doi: 10.11999/JEIT190017
基金项目: 国家自然科学基金(41801288, 41261091, 61662044, 61663031, 61762067)
详细信息
    作者简介:

    葛芸:女,1983年生,博士,讲师,研究方向为遥感图像处理与机器学习

    马琳:女,1996年生,硕士生,研究方向为遥感图像处理与机器学习

    江顺亮:男,1966年生,博士,教授,博士生导师,研究方向为算法设计与分析、计算机模拟与仿真、机器视觉

    叶发茂:男,1978年生,博士,副教授,研究方向为遥感图像处理、计算机图形学、机器学习

    通讯作者:

    葛芸 geyun@nchu.edu.cn

  • 中图分类号: TP751.1

The Combination and Pooling Based on High-level Feature Map for High-resolution Remote Sensing Image Retrieval

Funds: The National Natural Science Foundation of China (41801288, 41261091, 61662044, 61663031, 61762067)
  • 摘要: 高分辨率遥感图像内容复杂,提取特征来准确地表达图像内容是提高检索性能的关键。卷积神经网络(CNN)迁移学习能力强,其高层特征能够有效迁移到高分辨率遥感图像中。为了充分利用高层特征的优点,该文提出一种基于高层特征图组合及池化的方法来融合不同CNN中的高层特征。首先将高层特征作为特殊的卷积层特征,进而在不同输入尺寸下保留高层输出的特征图;然后将不同高层输出的特征图组合成一个更大的特征图,以综合不同CNN学习到的特征;接着采用最大池化的方法对组合特征图进行压缩,提取特征图中的显著特征;最后,采用主成分分析(PCA)来降低显著特征的冗余度。实验结果表明,与现有检索方法相比,该方法提取的特征在检索效率和准确率上都有优势。
  • 图  1  图像检索流程

    图  2  融合高层特征

    图  3  UC-Merced中不同特征检索结果比较

    图  4  WHU-RS中不同特征检索结果比较

    图  5  不同CoP特征PCA降维结果

    表  1  不同输入图像尺寸下高层CNN特征的输出值

    输入图像尺寸fcG-pool5R-pool5
    默认尺寸1×1×40961×1×10241×1×2048
    256×256×3(UC-Merced)2×2×40962×2×10242×2×2048
    600×600×3(WHU-RS)13×13×409612×12×102413×13×2048
    下载: 导出CSV

    表  2  UC-Merced中特征的相关系数

    特征AM1619G
    M–0.0037
    160.00060.0028
    19–0.00230.00530.4817
    G0.0012–0.0063–0.0086–0.0100
    R–0.01000.0008–0.0060–0.00210.1175
    下载: 导出CSV

    表  3  WHU-RS中特征的相关系数

    特征AM1619G
    M–0.0080
    16–0.00090.0027
    190.00010.00510.4762
    G–0.0024–0.0038–0.0110–0.0093
    R–0.00450.0084–0.0069–0.00220.1138
    下载: 导出CSV

    表  4  不同输入尺寸CoP特征检索结果比较

    数据集特征默认尺寸原始尺寸
    ANMRRmAPANMRRmAP
    UC-MercedCoP(16_G)0.28980.64110.28800.6446
    CoP(16_G_M)0.28340.64850.28320.6504
    CoP(16_G_M_19)0.28340.64960.28050.6544
    WHU-RSCoP(A_16)0.20070.74660.23300.7116
    CoP(A_16_G)0.18910.75820.23190.7125
    CoP(A_16_G_19)0.18750.76100.23180.7124
    下载: 导出CSV

    表  5  UC-Merced中微调CoP特征检索结果比较

    数据集特征默认尺寸原始尺寸
    ANMRRmAPANMRRmAP
    UC-MercedCoP(16_G)-FT0.27380.66020.27770.6566
    CoP(16_G_M)-FT0.26420.67160.26780.6683
    CoP(16_G_M_19)-FT0.26040.67670.25610.6822
    WHU-RSCoP(A_16)-FT0.17230.78090.19750.7501
    CoP(A_16_G)-FT0.15820.79710.19240.7559
    CoP(A_16_G_19)-FT0.15190.80480.18790.7615
    下载: 导出CSV

    表  6  UC-Merced中CoP特征与其他特征检索结果比较

    特征ANMRR维数
    浅层特征VLAD[2]0.460416384
    3层图[4]0.4317
    CNN特征VGGM-fc[14]0.37804096
    VGGM-conv5-IFK[15]0.4580102400
    VGG16-fc[15]0.39404096
    VGG16-conv5-IFK[15]0.4070102400
    LDCNN[15]0.439030
    GoogLeNet-MultiPatch-FT[16]0.31401024
    GoogLeNet-MultiPatch-FT-PCA[16]0.285032
    CoP(16_G)0.28804096
    CoP(16_G_M_19)0.28054096
    CoP(16_G_M_19)-FT0.25614096
    CoP(16_G_M_19)-PCA0.257732
    下载: 导出CSV
  • DEMIR B and BRUZZONE L. A novel active learning method in relevance feedback for content-based remote sensing image retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2323–2334. doi: 10.1109/TGRS.2014.2358804
    ÖZKAN S, ATEŞ T, TOLA E, et al. Performance analysis of state-of-the-art representation methods for geographical image retrieval and categorization[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(11): 1996–2000. doi: 10.1109/LGRS.2014.2316143
    陆丽珍, 刘仁义, 刘南. 一种融合颜色和纹理特征的遥感图像检索方法[J]. 中国图象图形学报, 2004, 9(3): 328–333. doi: 10.3969/j.issn.1006-8961.2004.03.013

    LU Lizhen, LIU Renyi, and LIU Nan. Remote sensing image retrieval using color and texture fused features[J]. Journal of Image and Graphics, 2004, 9(3): 328–333. doi: 10.3969/j.issn.1006-8961.2004.03.013
    WANG Yuebin, ZHANG Liqiang, TONG Xiaohua, et al. A three-layered graph-based learning approach for remote sensing image retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6020–6034. doi: 10.1109/TGRS.2016.2579648
    郭智, 宋萍, 张义, 等. 基于深度卷积神经网络的遥感图像飞机目标检测方法[J]. 电子与信息学报, 2018, 40(11): 2684–2690. doi: 10.11999/JEIT180117

    GUO Zhi, SONG Ping, ZHANG Yi, et al. Aircraft detection method based on deep convolutional neural network for remote sensing images[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2684–2690. doi: 10.11999/JEIT180117
    YE Famao, SU Yanfei, XIAO Hui, et al. Remote sensing image registration using convolutional neural network features[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(2): 232–236. doi: 10.1109/LGRS.2017.2781741
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Nevada, USA, 2012: 1097–1105.
    CHATFIELD K, SIMONYAN K, VEDALDI A, et al. Return of the devil in the details: Delving deep into convolutional networks[C]. The 25th British Machine Vision Conference, Nottingham, UK, 2014.
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015.
    SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
    CASTELLUCCIO M, POGGI G, SANSONE C, et al. Land use classification in remote sensing images by convolutional neural networks[J]. Acta Ecologica Sinica, 2015, 28(2): 627–635.
    ALIAS B, KARTHIKA R, and PARAMESWARAN L. Content based image retrieval of remote sensing images using deep learning with different distance measures[J]. Journal of Advanced Research in Dynamical and Control Systems, 2018, 10(3): 664–674.
    NAPOLETANO P. Visual descriptors for content-based retrieval of remote-sensing Images[J]. International Journal of Remote Sensing, 2018, 39(5): 1343–1376. doi: 10.1080/01431161.2017.1399472
    ZHOW Weixun, NEWSAM S, LI Congmin, et al. Learning low dimensional convolutional neural networks for high-resolution remote sensing image retrieval[J]. Remote Sensing, 2017, 9(5): 489. doi: 10.3390/rs9050489
    HU Fan, TONG Xinyi, XIA Guisong, et al. Delving into deep representations for remote sensing image retrieval[C]. The IEEE 13th International Conference on Signal Processing, Chengdu, China, 2016: 198–203.
    SHELHAMER E, LONG J, and DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640–651. doi: 10.1109/TPAMI.2016.2572683
    VEDALDI A and LENC K. MatConvNet: Convolutional neural networks for MATLAB[C]. The 23rd ACM International Conference on Multimedia, Brisbane, Australia, 2015: 689–692.
    HU Fan, XIA Guisong, HU Jingwen, et al. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery[J]. Remote Sensing, 2015, 7(11): 14680–14707. doi: 10.3390/rs71114680
    ZOU Qin, NI Lihao, ZHANG Tong, et al. Deep learning based feature selection for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(11): 2321–2325. doi: 10.1109/LGRS.2015.2475299
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  2799
  • HTML全文浏览量:  1110
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-09
  • 修回日期:  2019-06-18
  • 网络出版日期:  2019-06-25
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回