高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑回旋共振增强效应的平面单栅注波互作用线性分析

王晶 樊宇 赵鼎 杨晨 王刚 罗积润

王晶, 樊宇, 赵鼎, 杨晨, 王刚, 罗积润. 考虑回旋共振增强效应的平面单栅注波互作用线性分析[J]. 电子与信息学报, 2019, 41(12): 2919-2924. doi: 10.11999/JEIT181145
引用本文: 王晶, 樊宇, 赵鼎, 杨晨, 王刚, 罗积润. 考虑回旋共振增强效应的平面单栅注波互作用线性分析[J]. 电子与信息学报, 2019, 41(12): 2919-2924. doi: 10.11999/JEIT181145
Jing WANG, Yu FAN, Ding ZHAO, Chen YANG, Gang WANG, Jirun LUO. Analysis of Beam Wave Interaction in a Planar Metallic Grating Based on Cyclotron Resonance Enhancement Effect[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2919-2924. doi: 10.11999/JEIT181145
Citation: Jing WANG, Yu FAN, Ding ZHAO, Chen YANG, Gang WANG, Jirun LUO. Analysis of Beam Wave Interaction in a Planar Metallic Grating Based on Cyclotron Resonance Enhancement Effect[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2919-2924. doi: 10.11999/JEIT181145

考虑回旋共振增强效应的平面单栅注波互作用线性分析

doi: 10.11999/JEIT181145
基金项目: 国家自然科学基金(61671431)
详细信息
    作者简介:

    王晶:女,1985年生,博士生,研究方向为物理电子学

    樊宇:男,1990年生,助理研究员,研究方向为物理电子学

    赵鼎:男,1977年生,副研究员,研究方向为物理电子学

    杨晨:女,1992年生,博士生,研究方向为物理电子学

    王刚:男,1971年生,研究员,博士生导师,研究方向为物理电子学

    罗积润:男,1957年生,研究员,博士生导师,研究方向为物理电子学

    通讯作者:

    王晶 wangjing_bg@163.com

  • 中图分类号: TN122

Analysis of Beam Wave Interaction in a Planar Metallic Grating Based on Cyclotron Resonance Enhancement Effect

Funds: The National Natural Science Foundation of China (61671431)
  • 摘要: 基于电子注纵横运动与电磁场纵横分量同时同步相互作用,该文从麦克斯韦方程和线性伏拉索夫方程出发,推导出将回旋共振和契伦科夫共振同时考虑在内的平面单栅注波互作用热色散方程。在合理选择几何参数和电参数的基础上,通过热色散方程数值计算和分析,发现具有回旋共振增强效应下的注波互作用增益和频带都高于只有契伦科夫共振辐射下的结果。
  • 图  1  周期慢波结构中对应共振增强效应的色散曲线

    图  2  平面单栅与电子注互作用系统

    图  3  单周期相移为180°时,平面单栅电子通道中心处电场强度分布图及沿z方向变化的曲线图

    图  4  考虑回旋共振增强和纯契伦科夫共振的增益对比

    图  5  不同工作电流对回旋共振增强增益的影响

    图  6  不同横纵速度比$\alpha $对回旋共振增强增益的影响

    图  7  CST仿真的回旋共振增强和纯契伦科夫共振的增益对比图

    表  1  矩形单栅结构尺寸表(mm)

    参数几何尺寸
     周期p1.10
     槽深h1.00
     栅宽a1.75
     电子注到栅顶距离${y_c}$0.15
     栅顶边界到波导顶距离g0.30
    下载: 导出CSV
  • CHIPENGO U, NAHAR N K, and VOLAKIS J L. A study of velocity-tapered slow wave structures for high-efficiency backward wave oscillators[J]. IEEE Transactions on Electron Devices, 2018, 65(7): 3054–3060. doi: 10.1109/TED.2017.2769676
    SAN M T, OGURA K, KUBOTA K, et al. Study on operation of oversized backward wave oscillator for broadband terahertz radiation[J]. IEEE Transactions on Plasma Science, 2018, 46(3): 530–538. doi: 10.1109/TPS.2018.2796559
    PONOMARENKO S S, KISHKO S A, ZAVERTANNIY V V, et al. 400-GHz continuous-wave Clinotron oscillator[J]. IEEE Transactions on Plasma Science, 2013, 41(1): 82–86. doi: 10.1109/tps.2012.2226247
    XU Changpeng, YIN Yong, BI Liangjie, et al. A novel wire-wrap slow-wave structure for Terahertz backward wave oscillator Applications[J]. IEEE Transactions on Electron Devices, 2017, 64(1): 293–299. doi: 10.1109/TED.2016.2628045
    KARETNIKOVA T A, ROZHNEV A G, RYSKIN N M, et al. Gain analysis of a 0.2-THz traveling-wave tube with sheet electron beam and staggered grating slow wave structure[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2129–2134. doi: 10.1109/TED.2017.2787960
    RYSKIN N M, ROZHNEV A G, STARODUBOV A V, et al. Planar microstrip slow-wave structure for low-voltage V-band traveling-wave tube with a sheet electron beam[J]. IEEE Electron Device Letters, 2018, 39(5): 757–760. doi: 10.1109/LED.2018.2821770
    MINEO M and PAOLONI C. Comparison of THz backward wave oscillators based on corrugated waveguides[J]. Progress in Electromagnetics Research Letters, 2012, 30: 163–171. doi: 10.2528/PIERL12013107
    MINEO M and PAOLONI C. Corrugated rectangular waveguide tunable backward wave oscillator for terahertz applications[J]. IEEE Transactions on Electron Devices, 2010, 57(6): 1481–1484. doi: 10.1109/TED.2010.2045678
    MINEO M and PAOLONI C. Double-corrugated rectangular waveguide slow-wave structure for Terahertz vacuum devices[J]. IEEE Transactions on Electron Devices, 2010, 57(11): 3169–3175. doi: 10.1109/ted.2010.2071876
    NUSINOVICH G S and ZHAO Ding. Combined resonances in cyclotron masers with periodic slow-wave structures[J]. IEEE Transactions on Plasma Science, 2015, 43(3): 804–814. doi: 10.1109/TPS.2015.2396354
    LUCE T C. Applications of high-power millimeter waves in fusion energy research[J]. IEEE Transactions on Plasma Science, 2002, 30(3): 734–754. doi: 10.1109/TPS.2002.802147
    KALARIA P C, KARTIKEYAN M V, and THUMM M. Design of 170 GHz, 1.5-MW conventional cavity Gyrotron for plasma heating[J]. IEEE Transactions on Plasma Science, 2014, 42(6): 1522–1528. doi: 10.1109/TPS.2014.2305251
    THUMM M. High power Gyro-devices for plasma heating and other applications[J]. International Journal of Infrared and Millimeter Waves, 2005, 26(4): 483–503. doi: 10.1007/s10762-005-4068-8
    CHU K R. The electron cyclotron maser[J]. Reviews of Modern Physics, 2004, 76(2): 489–540. doi: 10.1103/RevModPhys.76.489
    ROSTOV V V, GUNIN A V, TSYGANKOV R V, et al. Two-wave Cherenkov oscillator with moderately oversized slow-wave structure[J]. IEEE Transactions on Plasma Science, 2018, 46(1): 33–42. doi: 10.1109/TPS.2017.2773661
    ZHANG Keqian and LI Dejie. Electromagnetic Theory for Microwaves and Optoelectronics[M]. New York: Springer, 1998: 383–397.
    ZHAO Ding. Kinetic analysis of two dimensional metallic grating Cerenkov maser[J]. Physics of Plasmas, 2011, 18(8): 084508. doi: 10.1063/1.3627146
    谢文球. 平面格栅慢波结构高频特性及注波互作用的研究[D]. [博士论文], 中国科学院大学, 2016.

    XIE Wenqiu. Investigation of the high frequency characteristics and beam wave interaction for the planar grating slow wave structure[D]. [Ph. D. dissertation], University of Chinese Academy of Sciences, 2016.
    KOU C S, WANG Q S, MCDERMOTT D B, et al. High-power harmonic gyro-TWT’s. I. Linear theory and oscillation study[J]. IEEE Transactions on Plasma Science, 1992, 20(3): 155–162. doi: 10.1109/27.142815
    刘盛纲. 相对论电子学[M]. 北京: 科学出版社, 1987: 228–233.

    LIU Shenggang. Relativistic Electronics[M]. Beijing: Science Press, 1987: 228–233.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1984
  • HTML全文浏览量:  1016
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-13
  • 修回日期:  2019-03-26
  • 网络出版日期:  2019-04-25
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回