Performance Analysis of Massive MIMO-OFDM System with Mixed-precision Analog-to-digital Converter
-
摘要: 该文对在接收端使用混合精度的模数转换器且采用迫零接收算法的大规模MIMO-OFDM系统的上行链路的频谱效率和能量效率进行了研究。采用加性量化噪声模型来对系统的性能进行分析,推导出整个系统的频谱效率和能量效率的近似闭式表达式,并通过仿真证明了表达式的正确性。研究结果表明,系统的频谱效率和每个用户的发送功率,接收端天线数目和接收端量化精度有关。数值和仿真结果还表明可以通过增加基站端的天线数量来补偿由低精度模数转换器带来的性能损失。Abstract: The spectral efficiency and energy efficiency of the uplink of massive MIMO-OFDM system is studied using mixed-precision Analog-Digital Converter (ADC) and Zero-Forcing (ZF) reception algorithm at the receiver. By using the additive quantization noise model to analyze the performance of the system, the approximate closed expression of the spectral efficiency and energy efficiency of the whole system is derived, and the correctness of the expression is proved by simulation. The research results show that the spectral efficiency of the system is related to the transmission power of each user, the number of antennas at the receiver and the quantization accuracy of the receiver. Numerical and simulation results also show that the performance loss caused by the low-precision ADC can be compensated by increasing the number of antennas at the base station.
-
Key words:
- MIMO-OFDM /
- Mixed-precision quantification /
- Spectral efficiency /
- Energy efficiency
-
表 1 不同量化精度的失真因子
b(bit) 1 2 3 4 5 $\rho $ 0.3634 0.1175 0.0345 0.0095 0.0025 -
BOCCARDI F, HEATH R W, LOZANO A, et al. Five disruptive technology directions for 5G[J]. IEEE Communications Magazine, 2014, 52(2): 74–80. doi: 10.1109/MCOM.2014.6736746 LARSSON E G, EDFORS O, TUFVESSON F, et al. Massive MIMO for next generation wireless systems[J]. IEEE Communications Magazine, 2014, 52(2): 186–195. doi: 10.1109/MCOM.2014.6736761 MARZETTA T L. Noncooperative cellular wireless with unlimited numbers of base station antennas[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3590–3600. doi: 10.1109/TWC.2010.092810.091092 SINGH J, DABEER O, and MADHOW U. On the limits of communication with low-precision analog-to-digital conversion at the receiver[J]. IEEE Transactions on Communications, 2009, 57(12): 3629–3639. doi: 10.1109/TCOMM.2009.12.080559 LI Yongzhi, TAO Cheng, SECO-GRANADOS G, et al. Channel estimation and performance analysis of one-bit massive MIMO systems[J]. IEEE Transactions on Signal Processing, 2017, 65(15): 4075–4089. doi: 10.1109/TSP.2017.2706179 LI Yongzhi, TAO Cheng, LEE SWINDLEHURST A, et al. Downlink achievable rate analysis in massive MIMO systems with one-bit DACs[J]. IEEE Communications Letters, 2017, 21(7): 1669–1672. doi: 10.1109/LCOMM.2017.2687871 FAN Li, JIN Shi, WEN Chaokai, et al. Uplink achievable rate for massive MIMO systems with low-resolution ADC[J]. IEEE Communications Letters, 2015, 19(12): 2186–2189. doi: 10.1109/LCOMM.2015.2494600 QIAO Dan, TAN Weiqiang, ZHAO Yuyan, et al. Spectral efficiency for massive MIMO zero-forcing receiver with low-resolution ADC[C]. Proceedings of the 20168th International Conference on Wireless Communications & Signal Processing, Yangzhou, China, 2016: 1–6. doi: 10.1109/WCSP.2016.7752527. ZHANG Mengjiao, TAN Weiqiang, GAO Junhui, et al. Power allocation for multicell mixed-ADC massive MIMO systems in Rician fading channels[C]. Proceedings of the 20179th International Conference on Wireless Communications and Signal Processing, Nanjing, China, 2017: 1–6. doi: 10.1109/WCSP.2017.8171074. ZHANG Jiayi, DAI Linglong, HE Ziyan, et al. Performance analysis of mixed-ADC massive MIMO systems over Rician fading channels[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(6): 1327–1338. doi: 10.1109/JSAC.2017.2687278 ZHANG Mengjiao, TAN Weiqiang, GAO Junhui, et al. Spectral efficiency and power allocation for mixed-ADC massive MIMO system[J]. China Communications, 2018, 15(3): 112–127. doi: 10.1109/CC.2018.8331995 PITAROKOILIS A, BJÖRNSON E, and LARSSON E G. Performance of the massive MIMO uplink with OFDM and phase noise[J]. IEEE Communications Letters, 2016, 20(8): 1595–1598. doi: 10.1109/LCOMM.2016.2581169 ZAIB A, MASOOD M, ALI A, et al. Distributed channel estimation and pilot contamination analysis for massive MIMO-OFDM systems[J]. IEEE Transactions on Communications, 2016, 64(11): 4607–4621. doi: 10.1109/TCOMM.2016.2593924 ZAIB A, MASOOD M, GHOGHO M, et al. Distributive estimation of frequency selective channels for massive MIMO systems[C]. Proceedings of the 201523rd European Signal Processing Conference, Nice, France, 2015: 889–893. doi: 10.1109/EUSIPCO.2015.7362511. ORHAN O, ERKIP E, and RANGAN S. Low power analog-to-digital conversion in millimeter wave systems: Impact of resolution and bandwidth on performance[C]. Proceedings of 2015 Information Theory and Applications Workshop, San Diego, USA, 2015: 191–198. doi: 10.1109/ITA.2015.7308988. SHARIATI N, BJÖRNSON E, BENGTSSON M, et al. Low-complexity channel estimation in large-scale MIMO using polynomial expansion[C]. Proceedings of the 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, London, UK, 2013: 1157–1162. doi: 10.1109/PIMRC.2013.6666313. NGO H Q, LARSSON E G, and MARZETTA T L. Energy and spectral efficiency of very large multiuser MIMO systems[J]. IEEE Transactions on Communications, 2013, 61(4): 1436–1449. doi: 10.1109/TCOMM.2013.020413.110848 MO Jianhua, ALKHATEEB A, ABU-SURRA S, et al. Hybrid architectures with few-bit ADC receivers: Achievable rates and energy-rate tradeoffs[J]. IEEE Transactions on Wireless Communications, 2017, 16(4): 2274–2287. doi: 10.1109/TWC.2017.2661749