高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种二维信号波达方向估计的改进多重信号分类算法

王旭东 仲倩 闫贺 张迪

王旭东, 仲倩, 闫贺, 张迪. 一种二维信号波达方向估计的改进多重信号分类算法[J]. 电子与信息学报, 2019, 41(9): 2137-2142. doi: 10.11999/JEIT181090
引用本文: 王旭东, 仲倩, 闫贺, 张迪. 一种二维信号波达方向估计的改进多重信号分类算法[J]. 电子与信息学报, 2019, 41(9): 2137-2142. doi: 10.11999/JEIT181090
Xudong WANG, Qian ZHONG, He YAN, Di ZHANG. An Improved MUSIC Algorithm for Two Dimensional Direction Of Arrival Estimation[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2137-2142. doi: 10.11999/JEIT181090
Citation: Xudong WANG, Qian ZHONG, He YAN, Di ZHANG. An Improved MUSIC Algorithm for Two Dimensional Direction Of Arrival Estimation[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2137-2142. doi: 10.11999/JEIT181090

一种二维信号波达方向估计的改进多重信号分类算法

doi: 10.11999/JEIT181090
基金项目: 航空基金(20182007001)
详细信息
    作者简介:

    王旭东:男,1978年生,博士,副教授,研究方向为信号检测、参数估计、FPGA设计应用

    仲倩:女,1995年生,硕士生,研究方向为雷达信号处理

    闫贺:男,1985年生,博士,副教授,研究方向为合成孔径雷达系统设计及信号处理

    张迪:女,1994年生,硕士生,研究方向为雷达信号处理

    通讯作者:

    仲 倩 zhongqian1120@163.com

  • 中图分类号: TN911.7

An Improved MUSIC Algorithm for Two Dimensional Direction Of Arrival Estimation

Funds: Aviation Fund (20182007001)
  • 摘要: 多重信号分类(MUSIC)算法是一种经典的空间谱估计算法。该文以L型阵列为例,针对2D-MUSIC算法在接收信号信噪比较小时对多个目标中方位相近的目标无法进行准确估计的问题,提出一种改进2D-MUSIC算法。该算法对经典2D-MUSIC算法所构成的协方差矩阵进行共轭重组,并将重组后矩阵的平方与原协方差矩阵的平方进行相加求平均,由此获得新的矩阵,再对该矩阵对应的噪声子空间进行加权处理,选取适当的加权系数构造新的噪声子空间,最后通过谱峰搜索识别出目标位置。计算机仿真结果表明,与2D-MUSIC算法相比,改进后的算法在接收信号信噪比较小时对多个目标中方位相近的目标也能够进行信号波达方向(DOA)估计,提高了L型阵列2维DOA估计的分辨率,具有较好的工程应用价值。
  • 图  1  L型天线阵列模型

    图  2  SNR = 0 dB时DOA估计空间谱图

    图  3  两种算法的分辨成功率随信噪比的变化图

    图  4  协方差矩阵R, ${{\text{R}}_{y1}}$${{\text{R}}_Y}\;$的信号子空间扰动情况随信噪比的变化图

    图  5  DOA估计的均方根误差随信噪比的变化

  • GONG Shu, XIONG Hailiang, PENG Meixuan, et al. Joint DOD and DOA estimation for bistatic multiple-input multiple-output radar target discrimination based on improved unitary ESPRIT method[J]. IET Communications, 2018, 12(12): 1397–1405. doi: 10.1049/iet-com.2017.1086
    LI Jianfeng, LI Dong, JIANG Defu, et al. Extended-aperture unitary root MUSIC-based DOA estimation for coprime array[J]. IEEE Communications Letters, 2018, 22(4): 752–755. doi: 10.1109/LCOMM.2018.2802491
    ZHANG Dong, ZHANG Yongshun, ZHENG Guimei, et al. Improved DOA estimation algorithm for co-prime linear arrays using root-MUSIC algorithm[J]. Electronics Letters, 2017, 53(18): 1277–1279. doi: 10.1049/el.2017.2292
    MONZINGO R A, HAUPT R L, and MILLER T W. Optimum Array Processing[M]. Introduction to Adaptive Arrays. 2nd ed. Raleigh, NC, SciTech Publishing, 2011: 81–149.
    LIU Lutao and LIU Huan. Joint estimation of DOA and TDOA of multiple reflections in mobile communications[J]. IEEE Access, 2016, 4: 3815–3823. doi: 10.1109/ACCESS.2016.2584088
    WANG Xianpeng, WANG Luyun, LI Xiumei, et al. An efficient sparse representation algorithm for DOA estimation in MIMO radar system[C]. Proceedings of 2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications, Edinburgh, UK, 2016: 1–4.
    SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830
    HUANG Qinghua, ZHANG Lin, and FANG Yong. Improving decoupled spherical harmonics ESPRIT using structured least squares[J]. IEEE Access, 2018, 6: 37956–37964. doi: 10.1109/ACCESS.2018.2839260
    宋虎, 蒋迺倜, 刘溶, 等. 基于稀疏采样阵列优化的APG-MUSIC算法[J]. 电子与信息学报, 2018, 40(6): 1390–1396. doi: 10.11999/JEIT170807

    SONG Hu, JIANG Naiti, LIU Rong, et al. APG-MUSIC algorithm based on sparse sampling array optimization[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1390–1396. doi: 10.11999/JEIT170807
    CHINTAGUNTA S and PONNUSAM P. 2D-DOD and 2D-DOA estimation using the electromagnetic vector sensors[J]. Signal Processing, 2018, 147: 163–172. doi: 10.1016/j.sigpro.2018.01.025
    YAO Bobin, ZHANG Weile, and WU Qisheng. Weighted subspace fitting for two-dimension DOA estimation in massive MIMO systems[J]. IEEE Access, 2017, 5: 14020–14027. doi: 10.1109/ACCESS.2017.2731379
    DIAB W M G and ELKAMCHOUCHI H M. A novel approach for 2D-DOA estimation using cross-shaped arrays[C]. Proceedings of 2008 IEEE Antennas and Propagation Society International Symposium, San Diego, USA, 2008: 1–4.
    DZIELSKI J E, BURKHARDT R C, and KOTANCHEK M E. Comments on " modified MUSIC algorithm for estimating DOA of signals”[J]. Signal Processing, 1996, 55(2): 253–254. doi: 10.1016/S0165-1684(96)00179-X
    方庆园, 韩勇, 金铭, 等. 基于噪声子空间特征值重构的DOA估计算法[J]. 电子与信息学报, 2014, 36(12): 2876–2881. doi: 10.3724/SP.J.1146.2013.02014

    FANG Qingyuan, HAN Yong, JIN Ming, et al. DOA estimation based on eigenvalue reconstruction of noise subspace[J]. Journal of Electronics &Information Technology, 2014, 36(12): 2876–2881. doi: 10.3724/SP.J.1146.2013.02014
    LI Jianfeng, ZHANG Xiaofei, and CHEN Han. Improved two-dimensional DOA estimation algorithm for two-parallel uniform linear arrays using propagator method[J]. Signal Processing, 2012, 92(12): 3032–3038. doi: 10.1016/j.sigpro.2012.06.010
    HUA Y, SARKAR T K, and WEINER D D. An L-shaped array for estimating 2-D directions of wave arrival[J]. IEEE Transactions on Antennas and Propagation, 1991, 39(2): 143–146. doi: 10.1109/8.68174
    路鸣, 保铮. 用低维子空间法分辨空间相干源的统计分析[J]. 电子学报, 1990, 18(1): 79–85.

    LU Ming and BAO Zheng. Statistical analysis of low dimensional subspace techniques for the resolution of coherent sources[J]. Acta Electronica Sinica, 1990, 18(1): 79–85.
  • 加载中
图(5)
计量
  • 文章访问数:  2202
  • HTML全文浏览量:  1902
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-26
  • 修回日期:  2019-03-25
  • 网络出版日期:  2019-04-19
  • 刊出日期:  2019-09-10

目录

    /

    返回文章
    返回