高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

合成多频磁感应信号同步激励-检测方法研究

杜强 张可昊 柯丽 王晨阳

杜强, 张可昊, 柯丽, 王晨阳. 合成多频磁感应信号同步激励-检测方法研究[J]. 电子与信息学报, 2019, 41(9): 2108-2114. doi: 10.11999/JEIT181083
引用本文: 杜强, 张可昊, 柯丽, 王晨阳. 合成多频磁感应信号同步激励-检测方法研究[J]. 电子与信息学报, 2019, 41(9): 2108-2114. doi: 10.11999/JEIT181083
Qiang DU, Kehao ZHANG, Li KE, Chenyang WANG. Research on Synchronous Excitation and Detection Method for Synthetic Multi-frequency Magnetic Induction Signals[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2108-2114. doi: 10.11999/JEIT181083
Citation: Qiang DU, Kehao ZHANG, Li KE, Chenyang WANG. Research on Synchronous Excitation and Detection Method for Synthetic Multi-frequency Magnetic Induction Signals[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2108-2114. doi: 10.11999/JEIT181083

合成多频磁感应信号同步激励-检测方法研究

doi: 10.11999/JEIT181083
基金项目: 国家自然科学基金(51377109),辽宁省教育厅重点实验室基础研究项目(LZ2014011)
详细信息
    作者简介:

    杜强:男,1975年生,博士,讲师,研究方向为生物阻抗检测、人体电信号检测与分析

    张可昊:男,1993年生,硕士生,研究方向为医学电磁工程及医疗仪器

    柯丽:女,1977年生,博士,教授,博士生导师,研究方向为生物阻抗成像、医学电磁工程

    王晨阳:男,1995年生,硕士生,研究方向为生物医学电子与信息技术

    通讯作者:

    柯丽 keli@sut.edu.cn

  • 中图分类号: TM933

Research on Synchronous Excitation and Detection Method for Synthetic Multi-frequency Magnetic Induction Signals

Funds: The National Natural Science Foundation of China (51377109), The Natural Science Foundation of Liaoning Province (LZ2014011)
  • 摘要: 磁感应检测技术是一种非接触、无创的电阻抗检测技术,多频率同步检测可同时获得不同频率下被测对象的阻抗信息。该文首先研究了磁感应信号多频率同步激励与检测原理,基于Walsh函数合成了5频率激励信号。其次分析了合成多频率同步检测性能,设计了合成多频磁感应信号同步检测系统。最后,通过合成5频率激励信号与同步检测系统进行不同电导率NaCl溶液的检测实验,结果表明:合成5频率激励信号5个主谐波的测量结果都具有很好的线性度,为磁感应信号多频率同步检测提供了激励-检测方法。
  • 图  1  合成多频磁感应信号同步激励-检测等效电路

    图  2  合成f (5, t)所需的5个Walsh函数

    图  3  合成的f (5, t)在单位周期[0, 1]上的波形

    图  4  f(5, t)的幅度谱和功率谱

    图  5  FPGA输出的f(5, t)信号

    图  6  FPGA输出的f(5, t)信号傅里叶变换结果

    图  7  同步激励-检测系统

    图  8  合成多频磁感应信号同步检测稳定性实验结果

    图  9  NaCl溶液的电导率和各谐波电压幅值差的关系图

    图  10  各主谐波平均幅值差$\Delta {b_k}$与电导率的关系

    表  1  合成5频率同步信号f(5, t)的主谐波Hk频谱特性

    Hkf02f04f08f016f0总和
    bk(V)0.61730.58820.54430.47750.4775
    Pk(%)19.0517.3014.7611.4011.4073.91
    下载: 导出CSV

    表  2  合成5频率激励信号f(5, t)的主谐波Hk频率值

    Hkf02f04f08f016f0
    Tclk=100 μs312.5 Hz625 Hz1.25 kHz2.5 kHz5 kHz
    Tclk=50 μs625 Hz1.25 kHz2.5 kHz5 kHz10 kHz
    下载: 导出CSV

    表  3  电导率与NaCl溶液浓度关系表

    电导率$\sigma $(S/m)1.02.03.04.0
    ppm(mg/L)5439114761762423713
    下载: 导出CSV

    表  4  不同电导率NaCl溶液同步检测结果

    $\Delta {b_k}$(mV)f02f04f08f016f0
    1.0 S/m265.355252.738233.404205.126205.396
    2.0 S/m277.931264.274244.421214.596214.693
    3.0 S/m290.190276.316255.436224.515224.252
    4.0 S/m302.210288.198266.145233.576234.086
    下载: 导出CSV

    表  5  各谐波归一化系数

    Hkf02f04f08f016f0
    归一化系数1.0001.0501.1361.2931.293
    下载: 导出CSV

    表  6  归一化处理后不同电导率NaCl溶液同步检测结果

    $\Delta {b_k}$(mV)f02f04f08f016f0平均值
    1.0 S/m265.355265.269265.160265.210265.560265.311
    2.0 S/m277.931277.377277.677277.454277.579277.603
    3.0 S/m290.190290.016290.190290.279289.939290.123
    4.0 S/m302.210302.487302.356301.993302.653302.340
    下载: 导出CSV
  • GRIFFITHS H. Magnetic induction tomography[J]. Measurement Science and Technology, 2001, 12(8): 1126–1131. doi: 10.1088/0957-0233/12/8/319
    YAN Qingguang, JIN Gui, QIN Mingxin, et al. Experimental study on the detection of rabbit intracranial hemorrhage using four coil structures based on magnetic induction phase shift[J]. Biomedizinische Technik Biomedical Engineering, 2017, 62(1): 1–14. doi: 10.1515/bmt-2015-0129
    柯丽, 刘欢, 杜强, 等. 基于滤波反投影的脑磁感应迭代重建算法研究[J]. 仪器仪表学报, 2016, 31(11): 2445–2451. doi: 10.3969/j.issn.0254-3087.2016.11.005

    KE Li, LIU Huan, DU Qiang, et al. Study on iterative reconstruction algorithm for brain magnetic induction based on filtered back-projection[J]. Chinese Journal of Scientific Instrument, 2016, 31(11): 2445–2451. doi: 10.3969/j.issn.0254-3087.2016.11.005
    罗海军, 廖勇, 潘海涛, 等. 导数法峰值锐化算法提高磁感应成像图像分辨率[J]. 电子与信息学报, 2018, 40(8): 1847–1852. doi: 10.11999/JEIT171102

    LUO Haijun, LIAO Yong, PAN Haitao, et al. Derivative method peak sharpening algorithm improves image resolution of magnetic induction tomography[J]. Journal of Electronics &Information Technology, 2018, 40(8): 1847–1852. doi: 10.11999/JEIT171102
    YIN Wuliang and PEYTON A J. Sensitivity formulation including velocity effects for electromagnetic induction systems[J]. IEEE Transactions on Magnetics, 2010, 46(5): 1172–1176. doi: 10.1109/TMAG.2009.2038275
    MELLERT F, WINKLER K, SCHNEIDER C, et al. Detection of (reversible) myocardial ischemic injury by means of electrical bioimpedance[J]. IEEE Transactions on Biomedical Engineering, 2010, 58(6): 1511–1518. doi: 10.1109/TBME.2010.2054090
    SUN T, HOLMES D, GAWAD S, et al. High speed multi-frequency impedance analysis of single particles in a microfluidic cytometer using maximum length sequences[J]. Lab on a Chip, 2007, 7(8): 1034–1040. doi: 10.1039/b703546b
    鞠康, 何为, 何传红, 等. 基于直接数字频率合成的混合频率恒流源设计[J]. 仪器仪表学报, 2010, 31(9): 2109–2114. doi: 10.19650/j.cnki.cjsi.2010.09.030

    JU Kang, HE Wei, HE Chuanhong, et al. Design of mixing frequency constant current source based on direct digital synthesizer[J]. Chinese Journal of Scientific Instrument, 2010, 31(9): 2109–2114. doi: 10.19650/j.cnki.cjsi.2010.09.030
    BRUNNER P, MERWA R, MISSNER A, et al. Reconstruction of the shape of conductivity spectra using differential multi-frequency magnetic induction tomography[J]. Physiological Measurement, 2006, 27: 237–248. doi: 10.1088/0967-3334/27/5/S20
    GURSOY D and SCHARFETTER H. Feasibility of head imaging using multi-frequency magnetic induction tomography[C]. Biomedical Engineering Meeting, Heidelberg, Germany, 2009, 525–528.
    XIAO Zhili, TAN Chao, and DONG Feng. Effect of inter-tissue inductive coupling on multi-frequency imaging of intracranial hemorrhage by magnetic induction tomography[J]. Measurement Science and Technology, 2017, 28(8): 1–11. doi: 10.1088/1361-6501/aa7504
    MA Lu and SOLEIMANI M. Magnetic induction tomography methods and applications: A review[J]. Measurement Science and Technology, 2017, 28(7): 072001. doi: 10.1088/1361-6501/aa7107
    吕轶, 王旭, 杨丹, 等. 一种磁感应成像中生物组织涡流信号的新型测量方法[J]. 电子与信息学报, 2011, 33(9): 2258–2262. doi: 10.3724/SP.J.1146.2010.01422

    LÜ Yi, WANG Xu, YANG Dan, et al. A new measurement method of eddy current for biological tissue in magnetic induction tomography[J]. Journal of Electronics &Information Technology, 2011, 33(9): 2258–2262. doi: 10.3724/SP.J.1146.2010.01422
    王超, 郎健, 王化祥. 用于生物阻抗测量的混频激励电流源[J]. 计量学报, 2006, 27(4): 392–396. doi: 10.3321/j.issn:1000-1158.2006.04.023

    WANG Chao, LANG Jian, and WANG Huaxiang. Mixing frequency excitation current source used in bioelectric impedance measuring system[J]. Acta Metrologica Sinica, 2006, 27(4): 392–396. doi: 10.3321/j.issn:1000-1158.2006.04.023
    杨宇祥, 乔洋. 一种多频率同步信号激励电流源设计[J]. 仪器仪表学报, 2013, 34(4): 908–913. doi: 10.19650/j.cnki.cjsi.2013.04.029

    YANG Yuxiang and QIAO Yang. Design of a multi-frequency synchronized signal excitation current source[J]. Chinese Journal of Scientific Instrument, 2013, 34(4): 908–913. doi: 10.19650/j.cnki.cjsi.2013.04.029
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  2067
  • HTML全文浏览量:  930
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-26
  • 修回日期:  2019-04-22
  • 网络出版日期:  2019-04-29
  • 刊出日期:  2019-09-10

目录

    /

    返回文章
    返回