高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Toeplitz协方差矩阵重构的互质阵列DOA估计方法

孙兵 阮怀林 吴晨曦 钟华

孙兵, 阮怀林, 吴晨曦, 钟华. 基于Toeplitz协方差矩阵重构的互质阵列DOA估计方法[J]. 电子与信息学报, 2019, 41(8): 1924-1930. doi: 10.11999/JEIT181041
引用本文: 孙兵, 阮怀林, 吴晨曦, 钟华. 基于Toeplitz协方差矩阵重构的互质阵列DOA估计方法[J]. 电子与信息学报, 2019, 41(8): 1924-1930. doi: 10.11999/JEIT181041
Bing SUN, Huailin RUAN, Chenxi WU, Hua ZHONG. Direction of Arrival Estimation with Coprime Array Based on Toeplitz Covariance Matrix Reconstruction[J]. Journal of Electronics & Information Technology, 2019, 41(8): 1924-1930. doi: 10.11999/JEIT181041
Citation: Bing SUN, Huailin RUAN, Chenxi WU, Hua ZHONG. Direction of Arrival Estimation with Coprime Array Based on Toeplitz Covariance Matrix Reconstruction[J]. Journal of Electronics & Information Technology, 2019, 41(8): 1924-1930. doi: 10.11999/JEIT181041

基于Toeplitz协方差矩阵重构的互质阵列DOA估计方法

doi: 10.11999/JEIT181041
基金项目: 国家自然科学基金(61171170),安徽省自然科学基金(1408085QF115)
详细信息
    作者简介:

    孙兵:男,1991年生,博士生,研究方向为空间信息处理、雷达及雷达对抗理论与技术

    阮怀林:男,1964年生,教授,博士生导师,主要研究方向为空间信息处理、雷达及雷达对抗理论与技术、压缩感知理论

    吴晨曦:男,1988年生,讲师,博士生,研究方向为阵列信号处理、稀疏重构技术

    钟华:男,1991年生,博士生,研究方向为阵列信号处理

    通讯作者:

    阮怀林 13721052122@163.com

  • 中图分类号: TN911.23

Direction of Arrival Estimation with Coprime Array Based on Toeplitz Covariance Matrix Reconstruction

Funds: The National Natural Science Foundation of China (61171170), The Anhui Province Natural Science Foundation (1408085QF115)
  • 摘要: 针对基于互质阵列的欠定DOA估计方法对于虚拟阵元非连续部分利用率不高的问题,该文提出一种基于Toeplitz协方差矩阵重构的DOA估计方法。首先,从互质阵列差联合阵的角度分析虚拟阵元分布特性,结合其与协方差矩阵中各元素得到的波程差存在对应关系,将协方差矩阵进行扩展得到一个数据缺失的高维协方差矩阵;然后,根据矩阵填充理论,用迹范数代替秩范数进行松弛,对缺失元素进行填充;最后,利用现有root-MUSIC方法进行DOA估计。理论分析和仿真结果表明,该方法提升了虚拟阵元的利用率,从而增加了虚拟孔径和可估计信号数,同时无需对角度域进行离散化处理,有效消除了模型失配的影响,并且避免了正则化参数选取问题,提高了估计精度和分辨率。
  • 图  1  互质阵列示意图

    图  2  差联合阵示意图

    图  3  可估计信号数目比较

    图  4  分辨率比较

    图  5  信噪比对角度均方根误差影响

    图  6  快拍数对角度均方根误差影响

    图  7  运算时间随信号数变化

  • VAIDYANATHAN P P and PAL P. Sparse sensing with co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573–586. doi: 10.1109/TSP.2010.2089682
    LIU Chunlin and VAIDYANATHAN P P. Remarks on the spatial smoothing step in coarray MUSIC[J]. IEEE Signal Processing Letters, 2015, 22(9): 1438–1442. doi: 10.1109/LSP.2015.2409153
    LIU Jing, ZHOU Weidong, HUANG Defeng, et al. Covariance matrix based fast smoothed sparse DOA estimation with partly calibrated array[J]. AEU International Journal of Electronics and Communications, 2018, 84: 8–12. doi: 10.1016/j.aeue.2017.10.026
    ALQADAH H F and SCHOLNIK D P. Stable DOA estimation with sparse sensor arrays[C]. 2017 IEEE Radar Conference, Washington, USA, 2017: 803–808.
    赵季红, 马兆恬, 曲桦, 等. 冲击噪声下基于矩阵预处理的稀疏重构DoA估计[J]. 电子与信息学报, 2018, 40(3): 670–675. doi: 10.11999/JEIT170371

    ZHAO Jihong, MA Zhaotian, QU Hua, et al. DoA estimation based on matrix preconditioning through sparse reconstruction in impulsive noise[J]. Journal of Electronics &Information Technology, 2018, 40(3): 670–675. doi: 10.11999/JEIT170371
    蔡晶晶, 宗汝, 蔡辉. 基于空域平滑稀疏重构的DOA估计算法[J]. 电子与信息学报, 2016, 38(1): 168–173. doi: 10.11999/JEIT150538

    CAI Jingjing, ZONG Ru, and CAI Hui. DOA estimation via sparse representation of the smoothed array covariance matrix[J]. Journal of Electronics &Information Technology, 2016, 38(1): 168–173. doi: 10.11999/JEIT150538
    LV Wanghan, WANG Huali, LIU Feng, et al. Wideband DOA estimation based on co-prime arrays with sub-Nyquist sampling[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2016, E99-A(9): 1717–1720. doi: 10.1587/transfun.E99.A.1717
    SHEN Qing, CUI Wei, LIU Wei, et al. Underdetermined wideband DOA estimation of off-grid sources employing the difference co-array concept[J]. Signal Processing, 2017, 130: 299–304. doi: 10.1016/j.sigpro.2016.07.022
    CAI Jingjing, LIU Wei, ZONG Ru, et al. Sparse array extension for non-circular signals with subspace and compressive sensing based DOA estimation methods[J]. Signal Processing, 2018, 145: 59–67. doi: 10.1016/j.sigpro.2017.11.012
    CHI Yuejie, SCHARF L L, PEZESHKI A, et al. Sensitivity to basis mismatch in compressed sensing[J]. IEEE Transactions on Signal Processing, 2011, 59(5): 2182–2195. doi: 10.1109/TSP.2011.2112650
    LI Yuanxin and CHI Yuejie. Compressive parameter estimation with multiple measurement vectors via structured low-rank covariance estimation[C]. 2014 IEEE Workshop on Statistical Signal Processing, Gold Coast, Australia, 2014: 384–387.
    RAMIREZ J and KROLIK J. Multiple source localization with moving co-prime arrays[C]. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, Brisbane, Australia, 2015: 2374–2378.
    BOUDAHER E, JIA Yong, AHMAD F, et al. Multi-frequency co-prime arrays for high-resolution direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2015, 63(14): 3797–3808. doi: 10.1109/TSP.2015.2432734
    BOUDAHER E, AHMAD F, and AMIN M G. Sparsity-based extrapolation for direction-of-arrival estimation using co-prime arrays[C]. Proceedings of SPIE 9857, Compressive Sensing V: from Diverse Modalities to Big Data Analytics, Baltimore, USA, 2016: 98570M.
    王洪雁, 房云飞, 裴炳南. 基于矩阵补全的二阶统计量重构DOA估计方法[J]. 电子与信息学报, 2018, 40(6): 1383–1389. doi: 10.11999/JEIT170826

    WANG Hongyan, FANG Yunfei, and PEI Bingnan. Matrix completion based second order statistic reconstruction DOA estimation method[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1383–1389. doi: 10.11999/JEIT170826
    CHEN Caihua, HE Bingsheng, and YUAN Xiaoming. Matrix completion via an alternating direction method[J]. IMA Journal of Numerical Analysis, 2012, 32(1): 227–245. doi: 10.1093/imanum/drq039
    MA Shiqian, GOLDFARB D, and CHEN Lifeng. Fixed point and Bregman iterative methods for matrix rank minimization[J]. Mathematical Programming, 2011, 128(1/2): 321–353. doi: 10.1007/s10107-009-0306-5
    LI Bo and PETROPULU A. Spectrum sharing between matrix completion based MIMO radars and a MIMO communication system[C]. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, Brisbane, Australia, 2015: 2444–2448.
    HU Yao, ZHANG Debing, YE Jieping, et al. Fast and accurate matrix completion via truncated nuclear norm regularization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(9): 2117–2130. doi: 10.1109/TPAMI.2012.271
    WU Xiaohuan, ZHU Weiping, and YAN Jun. A Toeplitz covariance matrix reconstruction approach for direction-of-arrival estimation[J]. IEEE Transactions on Vehicular Technology, 2017, 66(9): 8223–8237. doi: 10.1109/TVT.2017.2695226
    LIU Zhangmeng, HUANG Zhitao, and ZHOU Yiyu. Sparsity-inducing direction finding for narrowband and wideband signals based on array covariance vectors[J]. IEEE Transactions on Wireless Communications, 2013, 12(8): 1–12. doi: 10.1109/TWC.2013.071113.121305
  • 加载中
图(7)
计量
  • 文章访问数:  2802
  • HTML全文浏览量:  1511
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-14
  • 修回日期:  2019-03-14
  • 网络出版日期:  2019-04-13
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回