Research on the Novel Ultra-wideband Power Divider Based on Beetle Antennae Search Algorithm
-
摘要:
根据对马刺线的原理分析,该文提出一种新型马刺线结构,并在此基础上设计出一种新颖的超宽带功分器(频率范围为2.5~13.2 GHz)。该超宽带功分器尺寸较小,制作结构简单,带内传输特性好,输入与输出端口的回波损耗均小于–12 dB,带内插入损耗小于3.5 dB。在设计过程中,根据理想传输线模型,利用奇偶模分析方法,推导出设计的目标函数,并利用天牛须算法对其进行优化设计,有效提高了功分器的设计准确性和灵活性。为了验证设计的准确性,采用材料RO4003C作为基板设计超宽带功分器。实验结果表明,采用新型马刺线结构的超宽带功分器结合天牛须算法有效缩短了计算时间,提高了设计精度,可以广泛运用于超宽带功分器设计。
Abstract:Based on the study of the spur-line, a novel spurs-line structure is proposed. The design of a novel Ultra-WideBand (UWB) power divider is described based on the novel spur line structure for the 2.5~13.2 GHz frequency range. The designed device is compact and has a simple structure and good frequency response in the band. Its return loss insertion is less than –12 dB and its insertion loss is less than 3.5 dB. The equations used for the design are based on the concept of odd-even modes and transmission line analysis. The Beetle Antennae Search (BAS) algorithm is used to improve the efficiency and accuracy of the power divider design. In order to verify the accuracy of the design, a UWB power divider is designed by using material RO4003C as substrate. The results validate the feasibility of the spur line-based design and demonstrat that the BAS algorithm has a shortened running time and improved precision compared to other optimization methods. It can be widely used in UWB power divider design.
-
Key words:
- UWB power divider /
- Spur-line /
- Beetle Antenna Search(BAS)
-
表 1 优化参数前后结果对比
最优值(dB) ${S_{11}}$ ${S_{22}}/{S_{11}}$ ${S_{23}}/{S_{32}}$ ${S_{21}}/{S_{31}}$ 没有采用优化算法 $ - 20$ $ - 29$ $ - 29$ $ - 3.2$ 采用天牛须算法 $ - 40$ $ - 50$ $ - 40$ $ - 3.1$ 表 2 功分器性能对比
参考文献 拓扑结构 复杂度 尺寸(cm$ \times $cm) 插入损耗(dB) 15 dB 隔离度(比值,(BW, GHz)) 隔离电阻数量 文献[1] CPD 低 3.0$ \times $1.0 3.5 3.00:1 (3.5–10.5) 1 文献[2] 多模谐振 低 3.0$ \times $2.0 5.0 2.90:1 (4.0–11.7) 1 文献[5] 级联 低 3.3$ \times $2.3 4.0 6.00:1 (2.0–12.0) 5 文献[6] SIR 低 3.0$ \times $2.0 5.0 – 1 文献[7] 非共面 高 4.0$ \times $4.0 4.0 – 1 文献[9] Radial Stub 低 2.0$ \times $1.5 3.8 1.50:1 (7.1–10.6) 1 文献[10] 耦合振荡 低 4.0$ \times $1.2 3.7 隔离度均大于–15 dB 1 本文 马刺线级联 低 1.4$ \times $1.5 <3.5 2.67:1 (4.5–12.0) 1 -
UCHENDU I E and KELLY J R. Ultrawide isolation bandwidth compensated power divider for UWB applications[J]. Microwave and Optical Technology Letters, 2017, 59(12): 3177–3180. doi: 10.1002/mop.30899 WENG Meili, SONG Yaoliang, and ZHAO Junding. Design of compact microstrip UWB power divider using square ring multiple-mode resonator[C]. 2015 Asia-pacific Microwave Conference, Nanjing, China, 2015: 1–3. doi: 10.1109/APMC.2015.7411703. WU Y and LIU Y. Compact 3–11 GHz UWB planar unequal power divider using two-section asymmetric coupled transmission lines and non-uniform microstrip[J]. Electronics Letters, 2013, 49(16): 1002–1003. doi: 10.1049/el.2013.0296 XU Xin and TANG Xiaohong. Design of an ultra-wideband power divider with harmonics suppression[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2015, 25(4): 299–304. doi: 10.1002/mmce.20862 郭峥, 池少腾, 杨自强. 2~12 GHz超宽带功分器的设计[J]. 应用科技, 2015, 42(4): 34–36. doi: 10.3969/j.issn.1009-671X.201502002GUO Zheng, CHI Shaoteng, and YANG Ziqiang. Design of 2~12 GHz ultra-wideband power dividers[J]. Applied Science and Technology, 2015, 42(4): 34–36. doi: 10.3969/j.issn.1009-671X.201502002 MONDAL P and PARUI S K. Multi-mode resonator-based ultra-wideband power divider[J]. Microwave and Optical Technology Letters, 2016, 58(10): 2419–2422. doi: 10.1002/mop.30063 PENG Hao, YANG Ziqiang, LIU Yu, et al. An improved UWB non-coplanar power divider[J]. Progress in Electromagnetics Research, 2013, 138: 31–39. doi: 10.2528/PIER13011003 SEDDIKI M L, GHANEM F, and NEDIL M. A compact power divider multilyer for UWB applications[C]. The 17th International Symposium on Antenna Technology and Applied Electromagnetics, Montreal, Canada, 2016: 1–2. doi: 10.1109/ANTEM.2016.7550208. RAHIM N H A, SAARI M F A H, IBRAHIM S Z, et al. Wideband power divider using radial stub for six-port interferometer[C]. 2016 IEEE Asia-Pacific Conference on Applied Electromagnetics, Langkawi, Malaysia, 2016: 127–131. doi: 10.1109/APACE.2016.7915868. MONDAL P and PARUI S K. Wideband coupled resonator based ultra-wideband 3db power divider[C]. 2017 IEEE Applied Electromagnetics Conference, Aurangabad, India, 2017: 1–2. doi: 10.1109/AEMC.2017.8325699. 武欢欢, 陈明, 张延冬, 等. 宽带Wilkinson功分器的粒子群优化设计[J]. 强激光与粒子束, 2018, 30(3): 30033003. doi: 10.11884/HPLPB201830.170314WU Huanhuan, CHEN Ming, ZHANG Yandong, et al. Design of broadband Wilkinson power divider based on particle swarm optimization[J]. High Power Laser and Particle Beams, 2018, 30(3): 30033003. doi: 10.11884/HPLPB201830.170314 回海生, 刘建霞, 梁军. 基于改进PSO算法优化RF MEMS功分器设计[J]. 微纳电子技术, 2017, 54(4): 254–260. doi: 10.13250/j.cnki.wndz.2017.04.006HUI Haisheng, LIU Jianxia, and LIANG Jun. Design of the RF MEMS power divider based on an improved PSO algorithm[J]. Micronanoelectronic Technology, 2017, 54(4): 254–260. doi: 10.13250/j.cnki.wndz.2017.04.006 JIANG Xiangyuan and LI Shuai. BAS: Beetle antennae search algorithm for optimization problems[J]. International Journal of Robotics and Control, 2018, 1(1): 1–5. doi: 10.5430/ijrc.v1n1p1 VINDING J P. Radial line stubs as elements in strip line circuits[R]. NEREM Record, 1967: 108–109. ZHU Zongyao, ZHANG Zhiyu, MAN Weishi, et al. A new beetle antennae search algorithm for multi-objective energy management in microgrid[C]. The 13th IEEE Conference on Industrial Electronics and Applications, Wuhan, China, 2018: 1599–1603. doi: 10.1109/ICIEA.2018.8397965.