高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

短脉冲非相参雷达的逆合成孔径成像及其稀疏恢复成像技术

汪海波 黄文华 巴涛 姜悦

汪海波, 黄文华, 巴涛, 姜悦. 短脉冲非相参雷达的逆合成孔径成像及其稀疏恢复成像技术[J]. 电子与信息学报, 2019, 41(11): 2646-2653. doi: 10.11999/JEIT180912
引用本文: 汪海波, 黄文华, 巴涛, 姜悦. 短脉冲非相参雷达的逆合成孔径成像及其稀疏恢复成像技术[J]. 电子与信息学报, 2019, 41(11): 2646-2653. doi: 10.11999/JEIT180912
Haibo WANG, Wenhua HUANG, Tao BA, Yue JIANG. Inverse Synthetic Aperture Radar Imaging with Non-Coherent Short Pulse Radar and Its Sparse Recovery[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2646-2653. doi: 10.11999/JEIT180912
Citation: Haibo WANG, Wenhua HUANG, Tao BA, Yue JIANG. Inverse Synthetic Aperture Radar Imaging with Non-Coherent Short Pulse Radar and Its Sparse Recovery[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2646-2653. doi: 10.11999/JEIT180912

短脉冲非相参雷达的逆合成孔径成像及其稀疏恢复成像技术

doi: 10.11999/JEIT180912
详细信息
    作者简介:

    汪海波:男,1987年生,工程师,研究方向为高功率微波技术和雷达信号处理

    黄文华:男,1968年生,研究员,博士生导师,研究方向为高功率微波技术

    姜悦:女,1989年生,工程师,研究方向为高功率微波技术、特征提取与目标识别

    通讯作者:

    汪海波 wanghaibo@nint.ac.cn

  • 中图分类号: TN951

Inverse Synthetic Aperture Radar Imaging with Non-Coherent Short Pulse Radar and Its Sparse Recovery

  • 摘要: 短脉冲非相参雷达(NCSP)的辐射源输出微波脉冲持续时间短,针对于高速运动目标而言,其脉冲持续时间内的目标运动可忽略不计,对回波信号不需进行专门的脉冲内运动补偿。为了利用短脉冲非相参雷达信号进行逆合成孔径雷达成像,该文应用补偿相参处理的方法,去除辐射信号包络时间不确定性和初始相位的不确定性影响,在常规方法进行包络对齐和初相补偿后可利用距离-多普勒(RD)方法进行逆合成孔径雷达成像,仿真验证了补偿后信号成像的可行性。然而,短脉冲非相参雷达的载频随机抖动的因素会导致距离-多普勒成像结果在多普勒维度产生随机调制的旁瓣,影响成像的质量。利用稀疏恢复技术,在成像空间中对目标的散射中心进行稀疏重构,利用正交匹配追踪(OMP)算法和稀疏贝叶斯学习(SBL)算法进行成像,从而实现了抑制非相参因素引起的成像旁瓣,改进了成像质量,通过仿真验证了方法可行性。
  • 图  1  短脉冲非相参雷达系统结构

    图  2  3种信号对运动目标回波的对比

    图  3  成像几何模型

    图  4  点目标模型的设定

    图  5  频率抖动示意

    图  6  RD成像结果

    图  7  稀疏恢复成像结果

  • 胡银福, 冯进军. 用于雷达的新型真空电子器件[J]. 雷达学报, 2016, 5(4): 350–360. doi: 10.12000/JR16078

    HU Yinfu and FENG Jinjun. New vacuum electronic devices for radar[J]. Journal of Radars, 2016, 5(4): 350–360. doi: 10.12000/JR16078
    钱宝良. 国外高功率微波技术的研究现状与发展趋势[J]. 真空电子技术, 2015(2): 1–74. doi: 10.16540/j.cnki.cn11-2485/tn.2015.02.001

    QIAN Baoliang. The research status and developing tendency of high power microwave technology in foreign countries[J]. Vacuum Electronics, 2015(2): 1–74. doi: 10.16540/j.cnki.cn11-2485/tn.2015.02.001
    XIAO Renzhen, ZHANG Zhiqiang, LIANG Tiezhu, et al. A relativistic backward wave oscillator for directly generating circularly polarized TE11 mode[J]. Physics of Plasmas, 2016, 23(3): 033118. doi: 10.1063/1.4944915
    BLYAKHMAN A, CLUNIE D, HARRIS R, et al. Nanosecond gigawatt radar: Indication of small targets moving among heavy clutters[C]. 2007 IEEE Radar Conference, Boston, USA, 2007: 61–64. doi: 10.1109/RADAR.2007.374191.
    BLYAKHMAN A, CLUNIE D, MESIATS G, et al. Analysis of Nanosecond Gigawatt Radar[M]. Hirshfield J L and Petelin M L. Quasi-Optical Control of Intense Microwave Transmission. Netherlands: Springer, 2005: 283–296. doi: 10.1007/1-4020-3638-8_21.
    AUBRY A, DE MAIO A, CAROTENUTO V, et al. Radar phase noise modeling and effects-Part I: MTI filters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(2): 698–711. doi: 10.1109/TAES.2015.140549
    AUBRY A, CAROTENUTO V, DE MAIO A, et al. Radar phase noise modeling and effects-Part II: doppler processors and sidelobe blankers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(2): 712–725. doi: 10.1109/TAES.2015.140723
    RYSKIN N M, TITOV V N, and UMANTSIVA O V. Phase locking and mode switching in a backward-wave oscillator with reflections[J]. IEEE Transactions on Plasma Science, 2016, 44(8): 1270–1275. doi: 10.1109/TPS.2016.2517002
    SONG Wei, SUN Jun, SHAO Hao, et al. Inducing phase locking of multiple oscillators beyond the Adler’s condition[J]. Journal of Applied Physics, 2012, 111(2): 023302. doi: 10.1063/1.3671537
    SONG Wei, ZHANG Xiaowei, CHEN Changhua, et al. Enhancing frequency-tuning ability of an improved relativistic backward-wave oscillator[J]. IEEE Transactions on Electron Devices, 2013, 60(1): 494–497. doi: 10.1109/TED.2012.2230400
    XIAO Renzhen, SONG Zhimin, DENG Yuqun, et al. Mechanism of phase control in a klystron-like relativistic backward wave oscillator by an input signal[J]. Physics of Plasmas, 2014, 21(9): 093108. doi: 10.1063/1.4895598
    汪海波, 黄文华, 姜悦. 短脉冲非相参雷达的补偿相参处理方法研究[J]. 电子与信息学报, 2018, 40(8): 1823–1828. doi: 10.11999/JEIT171147

    WANG Haibo, HUANG Wenhua, and JIANG Yue. Compensative coherent processing algorithm for short pulse non-coherent radar[J]. Journal of Electronics &Information Technology, 2018, 40(8): 1823–1828. doi: 10.11999/JEIT171147
    PRICKETT M J. Principles of inverse synthetic aperture radar (ISAR)[J]. IEEE EASCON Record, 1980, 14(6): 340–345.
    ZHANG Lei, QIAO Zhijun, XING Mengdao, et al. High-resolution ISAR imaging with sparse stepped-frequency waveforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11): 4630–4651. doi: 10.1109/TGRS.2011.2151865
    KHARDIKOV V V and PROSVIRNIN S L. The Algorithm for ISAR imaging of fast moving target using radar with binary phase–coded waveforms[C]. The 5th International Conference on Antenna Theory and Techniques, Kyiv, Ukraine, 2005: 339–342. doi: 10.1109/ICATT.2005.1496974.
    白雪茹. 空天目标逆合成孔径雷达成像新方法研究[D]. [博士论文], 西安电子科技大学, 2011.

    BAI Xueru. Study on new techniques for ISAR imaging of aerospace targets[D]. [Ph.D. dissertation], Xidian University, 2011.
    RAO Wei, LI Gang, and WANG Xiqin. Parametric sparse representation method for ISAR imaging of rotating targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 910–919. doi: 10.1109/TAES.2014.120535
    吴敏, 邢孟道, 张磊. 基于压缩感知的二维联合超分辨ISAR成像算法[J]. 电子与信息学报, 2014, 36(1): 187–193. doi: 10.3724/SP.J.1146.2012.01597

    WU Min, XING Mengdao, and ZHANG Lei. Two dimensional joint super-resolution ISAR imaging algorithm based on compressive sensing[J]. Journal of Electronics &Information Technology, 2014, 36(1): 187–193. doi: 10.3724/SP.J.1146.2012.01597
    ZHANG Lei, QIAO Zhijun, XING Mengdao, et al. High-resolution ISAR imaging by exploiting sparse apertures[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2): 997–1008. doi: 10.1109/TAP.2011.2173130
    李少东, 杨军, 陈文峰, 等. 基于压缩感知理论的雷达成像技术与应用研究进展[J]. 电子与信息学报, 2016, 38(2): 495–508. doi: 10.11999/JEIT150874

    LI Shaodong, YANG Jun, CHEN Wenfeng, et al. Overview of radar imaging technique and application based on compressive sensing theory[J]. Journal of Electronics &Information Technology, 2016, 38(2): 495–508. doi: 10.11999/JEIT150874
    HE Xingyu, TONG Ningning, HU Xiaowei, et al. High-resolution ISAR imaging based on two-dimensional group sparse recovery[J]. IET Radar, Sonar & Navigation, 2018, 12(1): 82–86. doi: 10.1049/iet-rsn.2017.0161
    LIU Zhen, CHEN Xin, and SUI Jinping. High resolution wideband imaging of fast rotating targets based on random PRI radar[J]. Progress in Electromagnetic Research M, 2018, 63: 59–70. doi: 10.2528/PIERM17081005
    TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666. doi: 10.1109/TIT.2007.909108
    吕明久, 李少东, 杨军, 等. 基于随机调频步进信号的高分辨ISAR成像方法[J]. 电子与信息学报, 2016, 38(12): 3129–3136. doi: 10.11999/JEIT160177

    LÜ Mingjiu, LI Shaodong, YANG Jun, et al. High resolution ISAR imaging method based on random chirp frequency-stepped signal[J]. Journal of Electronics &Information Technology, 2016, 38(12): 3129–3136. doi: 10.11999/JEIT160177
    LIU Hongchao, JIU Bo, LIU Hongwei, et al. Superresolution ISAR imaging based on sparse Bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 5005–5013. doi: 10.1109/TGRS.2013.2286402
    JI Shihao, XUE Ya, and CARIN L. Bayesian compressive sensing[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2346–2356. doi: 10.1109/TSP.2007.914345
    BABACAN S D, MOLINA R, and KATSAGGELOS A K. Fast Bayesian compressive sensing using Laplace priors[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, China, 2009: 2873–2876. doi: 10.1109/ICASSP.2009.4960223.
    苏伍各, 王宏强, 邓彬, 等. 基于稀疏贝叶斯方法的脉间捷变频ISAR成像技术研究[J]. 电子与信息学报, 2015, 37(1): 1–8. doi: 10.11999/JEIT140315

    SU Wuge, WANG Hongqiang, DENG Bin, et al. The interpulse frequency agility ISAR imaging technology based on sparse Bayesian method[J]. Journal of Electronics &Information Technology, 2015, 37(1): 1–8. doi: 10.11999/JEIT140315
    吴顺君, 梅晓春. 雷达信号处理和数据处理技术[M]. 北京: 电子工程出版社, 2008: 51–80.

    WU Shunjun and MEI Xiaochun. Radar Signal Processing and Information Processing Technology[M]. Beijing: Publishing House of Electronics Industry, 2008: 51–80.
    POTTER L C, CHIANG Daming, CARRIERE R, et al. A GTD-based parametric model for radar scattering[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(10): 1058–1067. doi: 10.1109/8.467641
    O'DONNELL A N, WILSON J L, KOLTENUK D M, et al. Compressed sensing for radar signature analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4): 2631–2639. doi: 10.1109/TAES.2013.6621841
    李峰, 郭毅. 压缩感知浅析[M]. 北京: 科学出版社, 2015: 45–79.

    LI Feng and GUO Yi. Introduce to Compress Sensing[M]. Beijing: Science Press, 2015: 45–79.
  • 加载中
图(7)
计量
  • 文章访问数:  1900
  • HTML全文浏览量:  1200
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-21
  • 修回日期:  2019-01-12
  • 网络出版日期:  2019-05-20
  • 刊出日期:  2019-11-01

目录

    /

    返回文章
    返回