高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相邻互相关函数-参数化中心频率-调频率分布-Keystone变换的无源雷达机动目标相参积累方法

赵勇胜 胡德秀 刘智鑫 赵拥军 赵闯

赵勇胜, 胡德秀, 刘智鑫, 赵拥军, 赵闯. 基于相邻互相关函数-参数化中心频率-调频率分布-Keystone变换的无源雷达机动目标相参积累方法[J]. 电子与信息学报, 2019, 41(10): 2358-2365. doi: 10.11999/JEIT180858
引用本文: 赵勇胜, 胡德秀, 刘智鑫, 赵拥军, 赵闯. 基于相邻互相关函数-参数化中心频率-调频率分布-Keystone变换的无源雷达机动目标相参积累方法[J]. 电子与信息学报, 2019, 41(10): 2358-2365. doi: 10.11999/JEIT180858
Yongsheng ZHAO, Dexiu HU, Zhixin LIU, Yongjun ZHAO, Chuang ZHAO. Coherent Integration Algorithm Based on Adjacent Cross Correlation Function-Parameterized Centroid Frequency-Chirp Rate Distribution -Keystone Transform for Maneuvering Target in Passive Radar[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2358-2365. doi: 10.11999/JEIT180858
Citation: Yongsheng ZHAO, Dexiu HU, Zhixin LIU, Yongjun ZHAO, Chuang ZHAO. Coherent Integration Algorithm Based on Adjacent Cross Correlation Function-Parameterized Centroid Frequency-Chirp Rate Distribution -Keystone Transform for Maneuvering Target in Passive Radar[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2358-2365. doi: 10.11999/JEIT180858

基于相邻互相关函数-参数化中心频率-调频率分布-Keystone变换的无源雷达机动目标相参积累方法

doi: 10.11999/JEIT180858
基金项目: 国家自然科学基金(61703433)
详细信息
    作者简介:

    赵勇胜:男,1990年生,博士生,研究方向为无源雷达信号处理

    胡德秀:男,1983年生,讲师,研究方向为无源定位、信号分析与处理

    刘智鑫:男,1991年生,博士生,研究方向为辐射源定位、电子侦察等

    赵拥军:男,1964年生,教授、博士生导师,研究方向为雷达信号处理

    赵闯:男,1978年生,副教授,研究方向为雷达信号处理

    通讯作者:

    胡德秀 paper_hdx@126.com

  • 中图分类号: TN971

Coherent Integration Algorithm Based on Adjacent Cross Correlation Function-Parameterized Centroid Frequency-Chirp Rate Distribution -Keystone Transform for Maneuvering Target in Passive Radar

Funds: The National Natural Science Foundation of China (61703433)
  • 摘要: 延长积累时间可以有效提高无源雷达的目标探测能力,但是对于高速机动目标,其速度、加速度、第二加速度等因素导致现有的检测算法在积累过程中发生距离徙动(RM)和多普勒频率徙动(DFM),使得目标检测性能恶化。该文针对无源雷达中变加速运动目标的长时间相参积累问题,提出一种基于相邻互相关函数(ACCF)-参数化中心频率-调频率分布(PCFCRD)-Keystone变换(KT)的相参积累算法(ACCF-PCFCRD-KT)。首先给出无源雷达中变加速运动目标的回波模型,分析了目标速度、加速度和第二加速度对相参积累的影响。针对目标第二加速度引起的多普勒频率弯曲,采用ACCF降低了距离和多普勒频率徙动的阶数,而后利用PCFCRD估计出目标加速度和第二加速度参数,在补偿了目标加速度和第二加速度引起的2次和3次徙动后,利用KT校正目标速度引起的线性徙动,并实现目标回波的积累。仿真结果表明,该算法可有效补偿无源雷达中目标运动导致的RM和DFM,对变加速机动目标的积累效果显著优于现有算法。
  • 图  1  双基地无源雷达目标运动示意图

    图  2  本文算法对回波积累效果

    图  3  不同算法回波积累效果比较

    图  4  不同算法的检测性能曲线(${P_{\rm f}} = {10^{ - 4}}$)

  • ZAIMBASHI A. Target detection in analog terrestrial TV-based passive radar sensor: joint delay-Doppler estimation[J]. IEEE Sensors Journal, 2017, 17(17): 5569–5580. doi: 10.1109/JSEN.2017.2725822
    ZHAO Yongsheng, ZHAO Yongjun, and ZHAO Chuang. A novel algebraic solution for moving target localization in multi-transmitter multi-receiver passive radar[J]. Signal Processing, 2018, 143: 303–310. doi: 10.1016/j.sigpro.2017.09.014
    WANG Yasen, BAO Qinglong, WANG Dinghe, et al. An experimental study of passive bistatic radar using uncooperative radar as a transmitter[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 1868–1872. doi: 10.1109/LGRS.2015.2432574
    OLSEN K E and ASEN W. Bridging the gap between civilian and military passive radar[J]. IEEE Aerospace and Electronic Systems Magazine, 2017, 32(2): 4–12. doi: 10.1109/MAES.2017.160030
    GASSIER G, CHABRIEL G, BARRÈRE J, et al. A unifying approach for disturbance cancellation and target detection in passive radar using OFDM[J]. IEEE Transactions on Signal Processing, 2016, 64(22): 5959–5971. doi: 10.1109/TSP.2016.2600511
    COLONE F, O'HAGAN D W, LOMBARDO P, et al. A multistage processing algorithm for disturbance removal and target detection in passive bistatic radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 698–722. doi: 10.1109/TAES.2009.5089551
    HIGGINS T, WEBSTER T, and MOKOLE E L. Passive multistatic radar experiment using WiMAX signals of opportunity. Part 1: Signal processing[J]. IET Radar, Sonar & Navigation, 2016, 10(2): 238–247. doi: 10.1049/iet-rsn.2015.0020
    ZHU Daiyin, LI Yong, and ZHU Zhaoda. A Keystone transform without interpolation for SAR ground moving-target imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 18–22. doi: 10.1109/LGRS.2006.882147
    YU Ji, XU Jia, PENG Yingning, et al. Radon-Fourier transform for radar target detection (III): Optimality and fast implementations[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 991–1004. doi: 10.1109/TAES.2012.6178044
    RAO Xuan, TAO Haihong, SU Jia, et al. Detection of constant radial acceleration weak target via IAR-FRFT[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 3242–3253. doi: 10.1109/TAES.2015.140739
    LI Xiaolong, CUI Guolong, YI Wei, et al. Radar maneuvering target detection and motion parameter estimation based on TRT-SGRFT[J]. Signal Processing, 2017, 133: 107–116. doi: 10.1016/j.sigpro.2016.10.014
    MALANOWSKI M. Detection and parameter estimation of manoeuvring targets with passive bistatic radar[J]. IET Radar, Sonar & Navigation, 2012, 6(8): 739–745. doi: 10.1049/iet-rsn.2012.0072
    关欣, 胡东辉, 仲利华, 等. 一种高效的外辐射源雷达高径向速度目标实时检测方法[J]. 电子与信息学报, 2013, 35(3): 581–588. doi: 10.3724/SP.J.1146.2012.00903

    GUAN Xin, HU Donghui, ZHONG Lihua, et al. An effective real-time target detection algorithm for high radial speed targets in passive radar[J]. Journal of Electronics &Information Technology, 2013, 35(3): 581–588. doi: 10.3724/SP.J.1146.2012.00903
    杨金禄, 单涛, 陶然. 数字电视辐射源雷达的相参积累徙动补偿方法[J]. 电子与信息学报, 2011, 33(2): 407–411. doi: 10.3724/SP.J.1146.2010.00414

    YANG Jinlu, SHAN Tao, and TAO Ran. Method of migration compensation in coherent integration for digital TV based passive radar[J]. Journal of Electronics &Information Technology, 2011, 33(2): 407–411. doi: 10.3724/SP.J.1146.2010.00414
    杨宇翔, 同武勤, 熊瑾煜. 一种无源雷达高速机动目标检测新方法[J]. 电子与信息学报, 2014, 36(12): 3008–3013. doi: 10.3724/SP.J.1146.2013.01984

    YANG Yuxiang, TONG Wuqin, and XIONG Jinyu. A novel algorithm for detection of a maneuvering target in passive radar[J]. Journal of Electronics &Information Technology, 2014, 36(12): 3008–3013. doi: 10.3724/SP.J.1146.2013.01984
    XU Jia, ZHOU Xu, QIAN Lichang, et al. Hybrid integration for highly maneuvering radar target detection based on generalized radon-fourier transform[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(5): 2554–2561. doi: 10.1109/TAES.2016.150076
    LI Yachao, XING Mengdao, SU Junhai, et al. A new algorithm of ISAR imaging for maneuvering targets with low SNR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 543–557. doi: 10.1109/TAES.2013.6404119
    LI Xiaolong, CUI Guolong, YI Wei, et al. A fast maneuvering target motion parameters estimation algorithm based on ACCF[J]. IEEE Signal Processing Letters, 2015, 22(3): 270–274. doi: 10.1109/LSP.2014.2358230
    ZHENG Jibin, LIU Hongwei, and LIU Qinghuo. Parameterized centroid frequency-chirp rate distribution for LFM signal analysis and mechanisms of constant delay introduction[J]. IEEE Transactions on Signal Processing, 2017, 65(24): 6435–6446. doi: 10.1109/TSP.2017.2755604
    MALANOWSKI M, KULPA K, KULPA J, et al. Analysis of detection range of FM-based passive radar[J]. IET Radar, Sonar & Navigation, 2014, 8(2): 153–159. doi: 10.1049/iet-rsn.2013.0185
  • 加载中
图(4)
计量
  • 文章访问数:  2215
  • HTML全文浏览量:  1284
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-03
  • 修回日期:  2019-08-01
  • 网络出版日期:  2019-08-21
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回