高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高精度光纤时间频率一体化传递

杨文哲 杨宏雷 王学运 张升康 赵环 杨军 冯克明

杨文哲, 杨宏雷, 王学运, 张升康, 赵环, 杨军, 冯克明. 高精度光纤时间频率一体化传递[J]. 电子与信息学报, 2019, 41(7): 1579-1586. doi: 10.11999/JEIT180807
引用本文: 杨文哲, 杨宏雷, 王学运, 张升康, 赵环, 杨军, 冯克明. 高精度光纤时间频率一体化传递[J]. 电子与信息学报, 2019, 41(7): 1579-1586. doi: 10.11999/JEIT180807
Wenzhe YANG, Honglei YANG, Xueyun WANG, Shengkang ZHANG, Huan ZHAO, Jun YANG, Keming FENG. High Precision Time and Frequency Integration Transfer via Optical Fiber[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1579-1586. doi: 10.11999/JEIT180807
Citation: Wenzhe YANG, Honglei YANG, Xueyun WANG, Shengkang ZHANG, Huan ZHAO, Jun YANG, Keming FENG. High Precision Time and Frequency Integration Transfer via Optical Fiber[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1579-1586. doi: 10.11999/JEIT180807

高精度光纤时间频率一体化传递

doi: 10.11999/JEIT180807
详细信息
    作者简介:

    杨文哲:男,1991年生,博士生,研究方向为时间同步与校准技术等

    杨宏雷:男,1990年生,工程师,研究方向为光频梳及其精密测量应用等

    王学运:男,1982年生,高级工程师,研究方向为时间同步与校准技术等

    张升康:男,1980年生,研究员,研究方向为时间同步与校准技术等

    赵环:女,1980年生,高级工程师,研究方向为光学等

    杨军:男,1970年生,研究员,研究方向为守时与时间同步技术等

    冯克明:男,1966年生,研究员,研究方向为信号与系统等

    通讯作者:

    张升康 Shengkang.zhang@hotmail.com

  • 中图分类号: TN929.11

High Precision Time and Frequency Integration Transfer via Optical Fiber

  • 摘要: 为满足各工程应用领域对于高精度时间频率同步的需求,降低系统复杂度,保障大规模光纤时频传递网络的顺利建设,该文提出基于伪码调制技术的光纤时间频率一体化传递方法,设计并搭建了光纤时间频率一体化传递系统,完成了光纤单向和双向时频一体化传递。在单向时频传递试验中,分析了温度变化对于系统传输时延的影响;在双向时频传递试验中,实现了时间频率的高精度传递,系统附加时间传递抖动为0.28 ps/s, 0.82 ps/1000 s,附加频率传递不稳定度为4.94×10–13/s, 6.39×10–17/40000 s。试验结果表明,该方法实现了时间、频率一体化高精度同步,且系统附加时间传递抖动优于目前各光纤时间同步方案。
  • 图  1  光纤单向时间频率一体化传递原理图

    图  2  光纤单向时间频率一体化传递系统装置图

    图  3  时延测量结果与温度变化曲线

    图  4  单向传递系统频率传递稳定度曲线

    图  5  光纤双向时间频率一体化同步原理图

    图  6  光纤双向时间频率一体化同步试验系统装置图

    图  7  光纤双向时间同步结果

    图  8  光纤双向时间传递稳定度结果

    图  9  光纤双向频率传递稳定度结果

    表  1  光纤双向传递实验结果与国际顶尖实验结果比对

    方案年份传输距离(km)时间同步稳定度结果 频率传递稳定度结果
    秒稳定度(ps/s)长期稳定度秒稳定度(/s)长期稳定度
    文献[23]20143004011 ps/86400 s
    文献[20]2015120300.7 ps/1000 s
    文献[24]2015短光纤(米级)0.320 fs/10000 s
    文献[16]20102046×10–145×10–17/105 s
    文献[18]2012807×10–155×10–19/86400 s
    本文 20181000.281.19 ps/10000 s4.94×10–136.39×10–17/40000 s
    下载: 导出CSV
  • HE Wei, LIAN Baowang, and YANG Qiong. Time synchronization system design and research in GPS/INS Integrated Navigation System on complex dynamic situation[C]. Proceedings of 2013 IEEE International Conference of IEEE Region 10 (TENCON 2013), Xi’an, China, 2013: 1–5.
    曾涛, 殷丕磊, 杨小鹏, 等. 分布式全相参雷达系统时间与相位同步方案研究[J]. 雷达学报, 2013, 2(1): 105–110. doi: 10.3724/SP.J.1300.2013.20104

    ZENG Tao, YIN Pilei, YANG Xiaopeng, et al. Time and phase synchronization for distributed aperture coherent radar[J]. Journal of Radars, 2013, 2(1): 105–110. doi: 10.3724/SP.J.1300.2013.20104
    方立军, 马骏, 柳勇, 等. 一种大型分布式阵列雷达频率与相位同步[J]. 雷达科学与技术, 2017, 15(1): 85–88. doi: 10.3969/j.issn.1672-2337.2017.01.015

    FANG Lijun, MA Jun, LIU Yong, et al. Frequency and phase coherence in large distributed digital array radar[J]. Radar Science and Technology, 2017, 15(1): 85–88. doi: 10.3969/j.issn.1672-2337.2017.01.015
    SCHILLER S, TINO G M, GILL P, et al. Einstein gravity explorer-a medium-class fundamental physics mission[J]. Experimental Astronomy, 2009, 23(2): 573–610. doi: 10.1007/s10686-008-9126-5
    BONDARESCU R, BONDARESCU M, HETÉNYI G, et al. Geophysical applicability of atomic clocks: Direct continental geoid mapping[J]. Geophysical Journal International, 2012, 191(1): 78–82. doi: 10.1111/j.1365-246X.2012.05636.x
    CALHOUN M, HUANG S, and TJOELKER R L. Stable photonic links for frequency and time transfer in the deep-space network and antenna arrays[J]. Proceedings of the IEEE, 2007, 95(10): 1931–1946. doi: 10.1109/JPROC.2007.905048
    LEWANDOWSKI W, AZOUBIB J, and KLEPCZYNSKI W J. GPS: Primary tool for time transfer[J]. Proceedings of the IEEE, 1999, 87(1): 163–172. doi: 10.1109/5.736348
    GUANG Wei, DONG Shaowu, WU Wenjun, et al. Progress of BeiDou time transfer at NTSC[J]. Metrologia, 2018, 55(2): 175–187. doi: 10.1088/1681-7575/aaa673
    王学运, 赵博, 张升康, 等. 卫星双向时间频率传递调制解调器研制进展[J]. 宇航计测技术, 2014, 34(5): 23–26. doi: 10.3969/j.issn.1000-7202.2014.05.006

    WANG Xueyun, ZHAO Bo, ZHANG Shengkang, et al. The progress of BIRMM two-way satellite time and frequency transfer modem[J]. Journal of Astronautic Metrology and Measurement, 2014, 34(5): 23–26. doi: 10.3969/j.issn.1000-7202.2014.05.006
    王学运, 王海峰, 张升康, 等. 全新卫星双向时间比对调制解调器设计[J]. 电子学报, 2017, 45(10): 2555–2560. doi: 10.3969/j.issn.0372-2112.2017.10.034

    WANG Xueyun, WANG Haifeng, ZHANG Shengkang, et al. Design of a new two-way satellite time and frequency transfer modem[J]. Acta Electronica Sinica, 2017, 45(10): 2555–2560. doi: 10.3969/j.issn.0372-2112.2017.10.034
    DROSTE S, UDEM T, HÄNSCH T W, et al. Optical frequency transfer over a single-span 1840-km fiber link[C]. Proceedings of the 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC), Prague, Czech Republic, 2013: 1004–1006. doi: 10.1109/EFTF-IFC.2013.6702150.
    刘涛, 刘杰, 邓雪, 等. 光纤时间频率信号传递研究[J]. 时间频率学报, 2016, 39(3): 207–215. doi: 10.13875/j.issn.1674-0637.2016-03-0207-09

    LIU Tao, LIU Jie, DENG Xue, et al. Research on fiber-based time and frequency transfer[J]. Journal of Time and Frequency, 2016, 39(3): 207–215. doi: 10.13875/j.issn.1674-0637.2016-03-0207-09
    MARRA G, SLAVIK R, MARGOLIS H S, et al. High-resolution microwave frequency transfer over an 86-km-long optical fiber network using a mode-locked laser[J]. Optics Letters, 2011, 36(4): 511–513. doi: 10.1364/OL.36.000511
    LESSING M, MARGOLIS H S, BROWN C T A, et al. Frequency comb-based time transfer over a 159 km long installed fiber network[J]. Applied Physics Letters, 2017, 110(22): 221101. doi: 10.1063/1.4984144
    KIM J, CHEN J, ZHANG Zhigang, et al. Long-term femtosecond timing link stabilization using a single-crystal balanced cross correlator[J]. Optics Letters, 2007, 32(9): 1044–1046. doi: 10.1364/OL.32.001044
    FUJIEDA M, KUMAGAI M, and NAGANO S. Coherent microwave transfer over a 204-km telecom fiber link by a cascaded system[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(1): 168–174. doi: 10.1109/TUFFC.2010.1394
    LOPEZ O, KANJ A, POTTIE P E, et al. Simultaneous remote transfer of accurate timing and optical frequency over a public fiber network[J]. Applied Physics B, 2013, 110(1): 3–6. doi: 10.1007/s00340-012-5241-0
    WANG Bo, GAO Cao, CHEN Weiliang, et al. Precise and continuous time and frequency synchronisation at the 5×10-19 accuracy level[J]. Scientific Reports, 2012, 2: 556. doi: 10.1038/srep00556
    刘琴, 韩圣龙, 王家亮, 等. 采用级联方式实现430 km高精度频率传递[J]. 中国激光, 2016, 43(9): 0906001. doi: 10.3788/CJL201643.0906001

    LIU Qin, HAN Shenglong, WANG Jialiang, et al. High precise frequency transfer over a 430 km fiber backbone network using cascaded system[J]. Chinese Journal of Lasers, 2016, 43(9): 0906001. doi: 10.3788/CJL201643.0906001
    CHEN Xing, LU Jinlong, CUI Yifan, et al. Simultaneously precise frequency transfer and time synchronization using feed-forward compensation technique via 120 km fiber link[J]. Scientific Reports, 2015, 5: 18343. doi: 10.1038/srep18343
    BAI Yu, WANG Bo, GAO Cao, et al. Fiber-based multiple-access ultrastable radio and optical frequency dissemination[C]. Proceedings of the 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC), Prague, Czech Republic, 2013: 1014–1017. doi: 10.1109/EFTF-IFC.2013.6702187.
    SLAVIK R, MARRA G, FOKOUA E N, et al. Ultralow thermal sensitivity of phase and propagation delay in hollow core optical fibres[J]. Scientific Reports, 2015, 5: 15447. doi: 10.1038/srep15447
    HU Liang, WU Guiling, ZHANG Hao, et al. A 300-kilometer optical fiber time transfer using bidirectional TDM dissemination[C]. Proceedings of the 46th Annual Precise Time and Time Interval Systems and Applications Meeting, Boston, USA, 2014: 41–44.
    KODET J, PÁNEK P, and PROCHÁZKA I. Two-way time transfer via optical fiber providing subpicosecond precision and high temperature stability[J]. Metrologia, 2016, 53(1): 18–26. doi: 10.1088/0026-1394/53/1/18
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  3568
  • HTML全文浏览量:  1502
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-17
  • 修回日期:  2019-01-28
  • 网络出版日期:  2019-02-16
  • 刊出日期:  2019-07-01

目录

    /

    返回文章
    返回