Adversarial Example Generation Based on Particle Swarm Optimization
-
摘要: 随着机器学习被广泛的应用,其安全脆弱性问题也突显出来。该文提出一种基于粒子群优化(PSO)的对抗样本生成算法,揭示支持向量机(SVM)可能存在的安全隐患。主要采用的攻击策略是篡改测试样本,生成对抗样本,达到欺骗SVM分类器,使其性能失效的目的。为此,结合SVM在高维特征空间的线性可分的特点,采用PSO方法寻找攻击显著性特征,再利用均分方法逆映射回原始输入空间,构建对抗样本。该方法充分利用了特征空间上线性模型上易寻优的特点,同时又利用了原始输入空间篡改数据的可解释性优点,使原本难解的优化问题得到实现。该文对2个公开数据集进行实验,实验结果表明,该方法通过不超过7%的小扰动量生成的对抗样本均能使SVM分类器失效,由此证明了SVM存在明显的安全脆弱性。Abstract: As machine learning is widely applied to various domains, its security vulnerability is also highlighted. A PSO (Particle Swarm Optimization) based adversarial example generation algorithm is proposed to reveal the potential security risks of Support Vector Machine (SVM). The adversarial examples, generated by slightly crafting the legitimate samples, can mislead SVM classifier to give wrong classification results. Using the linear separable property of SVM in high-dimensional feature space, PSO is used to find the salient features, and then the average method is used to map back to the original input space to construct the adversarial example. This method makes full use of the easily finding salient features of linear models in the feature space, and the interpretable advantages of the original input space. Experimental results show that the proposed method can fool SVM classifier by using the adversarial example generated by less than 7 % small perturbation, thus proving that SVM has obvious security vulnerability.
-
表 1 粒子群寻优(PSO)算法
输入:A //特征子集 输出:B //显著性特征 (1) d=|A|,B=ϕ //A=(a(1),a(2),···,a(d)) (2) FOR i←1,2,···,N DO (3) si←rand(d),vi←rand(d) //初始化N个粒子的位置和
速度(4) pi←si //pi为第i个粒子的当前最佳位置 (5) END FOR
(6) pg←pj,其中j←argmaxifit(pi),i=1,2,···,N //pg为所有
粒子的当前最佳位置(7) FOR k←1,2,···,M DO //M为迭代次数 (8) FOR i←1,2,···,N DO
(9) vi+1←vi+c1r1(pi−si) +c2r2(pg−si)(10) si+1←si+vi+1 (11) IF fit(si+1)>fit(pi+1) THEN (12) pi←si+1 (13) END IF (14) END FOR (15) pg←pj 其中j←argmaxifit(pi) (16) END FOR (17) FOR i←1,2,···,d DO (18) IF pgi>0.5 THEN (19) B←B∪{a(i)} //a(i)是pgi对应的特征 (20) END IF (21) END FOR (22) RETURN B 表 2 输入空间扰动算法
输入:A //w从大到小排序后对应的特征 B //显著性特征 X0 //原始样本 输出:ΔX //对抗样本的扰动 (1) N=|B|,ΔX=0 //N为B的特征数,ΔX的大小与X0相
同,且所有特征的初始值为0(2) FOR i←1,2,···,N DO (3) k←index(b(i)) //k为B=(b(1),b(2),···,b(n))在特征空
间的特征索引(4) I←component(k) // I为特征空间的第k个特征对应
的“输入空间特征集”(5) σ←δ(θ,λ,I,X0)//δ(⋅)由式(11)得到 (6) FOR j←1,2,···,|I| DO (7) ΔX(j)←ΔX(j)+σ (8) END FOR (9) END FOR (10) RETURN ΔX //对抗样本的扰动 表 3 测试集中各个手写体的分类准确率(%)
手写体数字 0 1 2 3 4 5 6 7 8 9 准确率 98.88 98.94 95.16 95.74 96.13 92.71 97.18 94.65 93.94 93.76 表 4 不同扰动量下各类手写体数字的平均分类正确率(%)
手写体数字 扰动前 1%扰动 3%扰动 5%扰动 7%扰动 0 98.88 95.32 75.37 37.44 10.17 1 98.94 96.48 31.93 13.57 1.21 2 95.16 84.54 72.14 64.93 58.65 3 95.74 81.76 67.89 50.22 30.74 4 96.13 92.44 42.98 8.76 0.39 5 92.71 89.38 55.73 18.37 5.65 6 97.18 94.63 70.64 30.58 12.33 7 94.65 91.71 69.87 32.43 17.47 8 94.65 94.13 78.21 35.38 13.58 9 93.94 90.85 52.73 27.64 6.53 表 5 不同扰动比例下各对象的平均分类正确率(%)
人脸序号 1%扰动 3%扰动 5%扰动 7%扰动 1 95.12 90.02 68.82 38.63 2 87.68 71.13 54.98 29.22 3 91.19 81.57 58.13 29.16 4 89.43 75.27 52.29 21.09 5 90.78 79.27 43.55 26.87 6 87.91 71.62 60.14 21.33 7 83.26 41.12 15.67 8.31 8 92.43 70.22 47.93 29.83 9 91.33 75.71 46.62 28.11 10 94.66 81.73 57.45 30.13 11 82.63 68.20 30.79 10.32 12 98.78 81.17 66.05 37.16 13 72.65 57.27 33.48 6.37 14 85.17 63.33 49.78 7.91 15 97.5 89.85 70.21 29.84 -
BARRENO M, NELSON B, SEARS R, et al. Can machine learning be secure?[C]. Proceedings of 2006 ACM Symposium on Information, Computer and Communications Security, Taipei, China, 2006: 16–25. doi: 10.1145/1128817.1128824. LI Pan, ZHAO Wentao, LIU Qiang, et al. Security issues and their countermeasuring techniques of machine learning: A survey[J]. Journal of Frontiers of Computer Science & Technology, 2018, 12(2): 171–184. SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[EB/OL]. http://arxiv.org/abs/1312.6199v4, 2014. PAPERNOT N, MCDANIEL P, JHA S, et al. The limitations of deep learning in adversarial settings[C]. Proceedings of 2016 IEEE European Symposium on Security and Privacy, Saarbrucken, Germany, 2016: 372–387. doi: 10.1109/EuroSP.2016.36. PAPERNOT N, MCDANIEL P, GOODFELLOW I, et al. Practical black-box attacks against machine learning[EB/OL]. http://arxiv.org/abs/1602.02697v4, 2017. AKHTAR N and MIAN A. Threat of adversarial attacks on deep learning in computer vision: A survey[J]. IEEE Access, 2018, 6: 14410–14430. doi: 10.1109/ACCESS.2018.2807385 CORTES C and VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273–297. doi: 10.1007/BF00994018 BIGGIO B, NELSON B, and LASKOV P. Support vector machines under adversarial label noise[C]. Proceedings of the 3rd Asian Conference on Machine Learning, Taoyuan, China, 2011, 20: 97–112. BIGGIO B, NELSON B, and LASKOV P. Poisoning attacks against support vector machines[EB/OL]. http://arxiv.org/abs/1206.6389v3, 2013. MEI Shike and ZHU Xiaojin. Using machine teaching to identify optimal training-set attacks on machine learners[C]. Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, USA, 2015: 2871–2877. CHEN Zhipeng, TONDI B, LI Xiaolong, et al. A gradient-based pixel-domain attack against SVM detection of global image manipulations[C]. Proceedings of 2017 IEEE Workshop on Information Forensics and Security, Rennes, France, 2017: 1–6. doi: 10.1109/WIFS.2017.8267668. BIGGIO B, CORONA I, MAIORCA D, et al. Evasion attacks against machine learning at test time[EB/OL]. http://arxiv.org/abs/1708.06131, 2013. GOLLAND P. Discriminative direction for kernel classifiers[C]. Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic, Vancouver, British Columbia, Canada, 2001: 745–752. AMRAEE S, VAFAEI A, JAMSHIDI K, et al. Abnormal event detection in crowded scenes using one-class SVM[J]. Signal, Image and Video Processing, 2018, 12(6): 1115–1123. doi: 10.1007/s11760-018-1267-z BENMAHAMED Y, TEGUAR M, and BOUBAKEUR A. Application of SVM and KNN to Duval pentagon 1 for transformer oil diagnosis[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(6): 3443–3451. doi: 10.1109/TDEI.2017.006841 SCHNALL A and HECKMANN M. Feature-space SVM adaptation for speaker adapted word prominence detection[J]. Computer Speech & Language, 2019, 53: 198–216. doi: 10.1016/j.csl.2018.06.001 ZHAO Rui and MAO Kezhi. Semi-random projection for dimensionality reduction and extreme learning machine in high-dimensional space[J]. IEEE Computational Intelligence Magazine, 2015, 10(3): 30–41. doi: 10.1109/MCI.2015.2437316 EBERHART R and KENNEDY J. A new optimizer using particle swarm theory[C]. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 2002: 39–43. doi: 10.1109/MHS.1995.494215. SHI Y and EBERHART R. A modified particle swarm optimizer[C]. Proceeding of 1998 IEEE International Conference on Evolutionary Computation, World Congress on Computational Intelligence, Anchorage, USA, 1998: 69–73. doi: 10.1109/ICEC.1998.699146. LIN S W, YING K C, CHEN S C, et al. Particle swarm optimization for parameter determination and feature selection of support vector machines[J]. Expert Systems with Applications, 2008, 35(4): 1817–1824. doi: 10.1016/j.eswa.2007.08.088 LECUN Y, CORTES C, and BURGES C J C. The MNIST database of handwritten digits[EB/OL]. http://yann.lecun.com/exdb/mnist/, 2010. YALE. The Yale face database[OL]. http://cvc.cs.yale.edu/cvc/projects/yalefaces/yalefaces.html, 1997. 何光辉, 唐远炎, 房斌, 等. 图像分割方法在人脸识别中的应用[J]. 计算机工程与应用, 2010, 46(28): 196–198. doi: 10.3778/j.issn.1002-8331.2010.28.055HE Guanghui, TANG Yuanyan, FANG Bin, et al. Image partition method in face recognition[J]. Computer Engineering and Applications, 2010, 46(28): 196–198. doi: 10.3778/j.issn.1002-8331.2010.28.055 期刊类型引用(53)
1. 韦昀昊. 高铁环境下基于循环神经网络的无线传播信道模型研究. 微型电脑应用. 2024(03): 176-179 . 百度学术
2. 陈家乐. 基于大数据分析的网络实时异常入侵行为检测. 信息与电脑(理论版). 2024(02): 198-200 . 百度学术
3. 刘鑫,王明明. 浅析南水北调工程安防系统关键技术要点. 水利技术监督. 2024(05): 209-212 . 百度学术
4. 苏凯旋. 基于改进XGBoost模型的网络入侵检测研究. 计算机与现代化. 2024(06): 109-114 . 百度学术
5. 胡璐锦,王振凯,狄森川,蔡胜奇,刘毓. 城市多出行方式轨迹预测的模型集成方法. 测绘科学. 2024(09): 71-80 . 百度学术
6. 冯国聪,樊凯,叶婉琦. 基于卷积神经网络的网络入侵检测系统设计. 微型电脑应用. 2023(05): 141-143+154 . 百度学术
7. 王文杰,张春英,王立亚,贾栋豪,郭雪飞. 融合IPCA和CNN的增量入侵检测模型. 华北理工大学学报(自然科学版). 2023(03): 90-100+109 . 百度学术
8. 林鹏,陈聪,徐盛秋,蔡富裕,廖华. 融合图像与红外传感的变电站异物入侵在线监测. 电子设计工程. 2023(15): 178-181+186 . 百度学术
9. 王振东,徐振宇,李大海,王俊岭. 面向入侵检测的元图神经网络构建与分析. 自动化学报. 2023(07): 1530-1548 . 百度学术
10. 路春辉. 基于支持向量机和象群优化算法的入侵检测技术研究. 信息技术. 2023(09): 64-70 . 百度学术
11. 周明月,常明航,付殿臣,程超. 一种基于EA-BinGRU算法的网络入侵检测算法. 计算机应用与软件. 2023(11): 321-326 . 百度学术
12. 刘超. 广电机房网络安全隐患及网络安全技术策略探讨. 电脑编程技巧与维护. 2023(12): 160-163 . 百度学术
13. 吴丹,王俊,许燕. 基于深度学习的公共充电桩故障预测模型. 电子设计工程. 2022(05): 127-130+135 . 百度学术
14. 邹洪,刘家豪,陈锋,农彩勤,王斌. 基于递归神经网络的原始训练数据防泄漏密码生成系统设计. 电子设计工程. 2022(05): 122-126 . 百度学术
15. 胡向东,李之涵. 基于胶囊网络的工业互联网入侵检测方法. 电子学报. 2022(06): 1457-1465 . 百度学术
16. 谢澳归. 基于机器学习的入侵检测技术研究. 信息与电脑(理论版). 2022(08): 218-220 . 百度学术
17. 程超,武静凯,陈梅. 一种基于RBM-SVM算法的无线传感网络入侵检测算法. 计算机应用与软件. 2022(05): 325-329 . 百度学术
18. 付吉菊. 交互式网络恶意入侵跳频数据特征自动挖掘方法. 宁夏师范学院学报. 2022(07): 72-79 . 百度学术
19. 颜蔚. 基于卷积神经网络的无线网络安全风险评估及控制. 沈阳工业大学学报. 2022(05): 565-569 . 百度学术
20. 谭韶生,夏旭. 数据挖掘的船舶通信网络非法入侵智能检测方法. 舰船科学技术. 2022(17): 144-147 . 百度学术
21. 洪彦. 基于神经网络优化模型的网络通信异常检测. 佳木斯大学学报(自然科学版). 2022(05): 47-50 . 百度学术
22. 周慧君. 顾及环境胁迫反应机制的船舶轨迹预测方法. 测绘科学. 2022(09): 67-75+94 . 百度学术
23. 钟双莲,童峰,刘雨佶,章宇栋,陈东升. 低信噪比条件下深度学习麦克风阵列波束形成. 兵器装备工程学报. 2022(11): 273-277+296 . 百度学术
24. 李青. 云计算环境下船舶无线通信网络入侵检测方法. 舰船科学技术. 2022(21): 140-143 . 百度学术
25. 年飞翔,郭阳,徐梅,黄纯玺,金津,黄文婷,梁健,王艺. 基于BP神经网络的降水量估算模型在自动气象站降水量质量控制中的应用. 气象与环境科学. 2022(06): 101-107 . 百度学术
26. 谭伦荣,王辉. 基于深度卷积神经网络的无线通信网络异常攻击检测. 重庆科技学院学报(自然科学版). 2022(06): 60-64 . 百度学术
27. 赵晓松. 舰船无线网络入侵数据点自动定位方法. 舰船科学技术. 2021(04): 181-183 . 百度学术
28. 田桂丰,单志龙,廖祝华,王煜林. 基于Faster R-CNN深度学习的网络入侵检测模型. 南京理工大学学报. 2021(01): 56-62 . 百度学术
29. 王钰,刘磊. 基于特征扩展的网构软件测试数据分类模型构建. 电子设计工程. 2021(08): 29-32+37 . 百度学术
30. 田桂丰,单志龙,廖祝华,王煜林. 基于空间降维和多核支持向量机的网络入侵检测. 济南大学学报(自然科学版). 2021(04): 365-369+375 . 百度学术
31. 龚琴,柯善良. 基于机器学习的物联网反入侵检测方法研究. 内蒙古民族大学学报(自然科学版). 2021(03): 211-216 . 百度学术
32. 田里,喻潇,王捷,王晋. 基于Snort的网络安全入侵检测预防系统设计. 电子设计工程. 2021(18): 148-151+156 . 百度学术
33. 潘勇斌,顾全,廖华,周南菁. 基于循环神经网络的电网故障智能告警信息分类研究. 自动化技术与应用. 2021(09): 56-60 . 百度学术
34. 李闯. 无线网络入侵干扰信号特征分离方法. 通信技术. 2021(10): 2413-2417 . 百度学术
35. 陈雪芳. 基于AL-SVM算法的无线传感器网络入侵检测研究. 沈阳工程学院学报(自然科学版). 2021(04): 68-73 . 百度学术
36. 王佳坤,缪祥华,邵建龙. 基于深度循环神经网络的入侵检测方法. 化工自动化及仪表. 2021(06): 566-574+645 . 百度学术
37. 赵冬梅,宋会倩,张红斌. 基于时间因子和复合CNN结构的网络安全态势评估. 计算机科学. 2021(12): 349-356 . 百度学术
38. 杨力. 基于IPSO-SVM算法的网络入侵检测方案研究. 信息与电脑(理论版). 2021(23): 45-47 . 百度学术
39. 杨鹏. 移动警务网络中基于神经网络的入侵检测研究. 信息网络安全. 2021(S1): 26-29 . 百度学术
40. 吴丽佳. 基于压缩感知的智能电网入侵检测方法研究. 通信技术. 2020(03): 733-737 . 百度学术
41. 林立忠,池海宏. 舰船网络入侵目标检测效率优化方法分析. 舰船科学技术. 2020(10): 172-174 . 百度学术
42. 李刚,孙耀文,于德新,付海,赵邵蕾. 基于Agent人工智能技术的分布式入侵检测系统设计. 计算机测量与控制. 2020(07): 29-33+38 . 百度学术
43. 郭华,李颖,江浩,邓翔,王利斌,李祉岐. 基于物联网技术的电力线路信息网入侵检测系统设计. 电子设计工程. 2020(18): 131-135 . 百度学术
44. 邹洪,杨逸岳,张佳发. 基于K-means聚类算法的网络入侵监测系统设计. 自动化与仪器仪表. 2020(09): 123-126 . 百度学术
45. 刘文春. 网络异常流量特征选择方法研究. 新乡学院学报. 2020(09): 25-28+42 . 百度学术
46. 李腾耀,王布宏,尚福特,田继伟,曹堃锐. ADS-B攻击数据弹性恢复方法. 电子与信息学报. 2020(10): 2365-2373 . 本站查看
47. 宣乐飞. 舰船通信网络的入侵检测技术研究. 舰船科学技术. 2020(18): 136-138 . 百度学术
48. 苏明,马琳. 蚁群算法选择神经网络参数的网络入侵检测. 现代电子技术. 2020(22): 114-117 . 百度学术
49. 吴永芬,徐为. 基于蚁群优化算法和支持向量机相结合的医院网络非法入侵检测. 现代电子技术. 2020(22): 78-81 . 百度学术
50. 缪祥华,单小撤. 基于密集连接卷积神经网络的入侵检测技术研究. 电子与信息学报. 2020(11): 2706-2712 . 本站查看
51. 许春冬,徐琅,周滨,凌贤鹏. 单通道语音增强技术的研究现状与发展趋势. 江西理工大学学报. 2020(05): 55-64 . 百度学术
52. 蒋华伟,张磊. 基于长短期记忆生成对抗网络的小麦品质多指标预测模型. 电子与信息学报. 2020(12): 2865-2872 . 本站查看
53. 古险峰. 一种基于数据挖掘的网络入侵检测系统设计与实现. 河南科技学院学报(自然科学版). 2020(06): 54-58+67 . 百度学术
其他类型引用(34)
-