高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种用于时延积分CMOS图像传感器的10 bit全差分双斜坡模数转换器

张鹤玖 余宁梅 吕楠 刘尕

张鹤玖, 余宁梅, 吕楠, 刘尕. 一种用于时延积分CMOS图像传感器的10 bit全差分双斜坡模数转换器[J]. 电子与信息学报, 2019, 41(6): 1466-1471. doi: 10.11999/JEIT180752
引用本文: 张鹤玖, 余宁梅, 吕楠, 刘尕. 一种用于时延积分CMOS图像传感器的10 bit全差分双斜坡模数转换器[J]. 电子与信息学报, 2019, 41(6): 1466-1471. doi: 10.11999/JEIT180752
Hejiu ZHANG, Ningmei YU, Nan LÜ, Ga LIU. A 10 bit Fully Differential Dual Slope Analog-to-digital Converter for Time Delay Integration CMOS Image Sensors[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1466-1471. doi: 10.11999/JEIT180752
Citation: Hejiu ZHANG, Ningmei YU, Nan LÜ, Ga LIU. A 10 bit Fully Differential Dual Slope Analog-to-digital Converter for Time Delay Integration CMOS Image Sensors[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1466-1471. doi: 10.11999/JEIT180752

一种用于时延积分CMOS图像传感器的10 bit全差分双斜坡模数转换器

doi: 10.11999/JEIT180752
基金项目: 国家自然科学基金(61771388, 61801378),西安市科技计划项目(201805037YD15CG21(11))
详细信息
    作者简介:

    张鹤玖:男,1988年生,博士生,研究方向为模拟及数模混合集成电路设计

    余宁梅:女,1963年生,教授,博士生导师,研究方向为超大规模集成电路及数模混合集成电路技术

    吕楠:男,1987年生,讲师,研究方向为模拟及数模混合集成电路设计

    刘尕:男,1993年生,硕士生,研究方向为模拟及数模混合集成电路设计

    通讯作者:

    余宁梅 yunm@xaut.edu.cn

  • 中图分类号: TP335.1; TN432

A 10 bit Fully Differential Dual Slope Analog-to-digital Converter for Time Delay Integration CMOS Image Sensors

Funds: The National Natural Science Foundation of China (61771388, 61801378), Xi’an Science and Technology Plan Project (201805037YD15CG21(11))
  • 摘要: 为了满足时间延时积分(TDI)CMOS图像传感器转换全差分信号的需要,同时符合列并行电路列宽的限制,该文提出并实现了一种10 bit全差分双斜坡模数转换器(ADC)。在列并行单斜坡ADC的基础上,采用2个电容的上极板对差分输入进行采样,电容下极板接2个斜坡输出完成量化。基于电流舵结构的斜坡发生器同时产生上升和下降斜坡,2个斜坡的台阶电压大小相等。该电路使用SMIC 0.18 μm CMOS工艺设计实现,ADC以19.49 kS/s的采样频率对1.32 kHz的输入进行采样,仿真得到无杂散动态范围和有效位数分别为87.92 dB和9.84 bit。测试显示该ADC的微分非线性误差和积分非线性误差分别为–0.7/+0.6 LSB和–2.6/+2.1 LSB。
  • 图  1  TDI CMOS图像传感器的电路框图

    图  2  全差分双斜坡ADC

    图  3  带预放大的动态锁存比较器框图

    图  4  比较器的电路图

    图  5  斜坡发生器电路图

    图  6  实验芯片电子显微照片

    图  7  ADC的动态特性仿真结果

    图  8  ADC的静态特性测试结果

    表  1  本文提出的ADC与其它文献ADC的对比

    工艺(μm)系统结构位数(bit)时钟(MHz)转换时间(μs)斜坡电路个数输入方式
    文献[6]0.13单斜坡10100201单端
    文献[7]0.13单斜坡104001单端
    文献[8]0.25多斜坡两步式1020639单端
    文献[9]0.13单斜坡两步式1262.56.32单端
    本文0.18双斜坡102051.31差分
    下载: 导出CSV
  • GHALLAB Y H and ISMAIL Y. CMOS based lab-on-a-chip: applications, challenges and future trends[J]. IEEE Circuits and Systems Magazine, 2014, 14(2): 27–47. doi: 10.1109/MCAS.2014.2314264
    FANG Yuan, YU Ningmei, JIANG Yuquan, et al. High-precision lens-less flow cytometer on a chip[J]. Micromachines, 2018, 9(5): 227. doi: 10.3390/mi9050227
    HUANG Xiwei, JIANG Yu, LIU Xu, et al. Machine learning based single-frame super-resolution processing for lensless blood cell counting[J]. Sensors, 2016, 16(11): E1836. doi: 10.3390/s16111836
    LIU Xu, HUANG Xiwei, JIANG Yu, et al. A microfluidic cytometer for complete blood count with a 3.2-Megapixel, 1.1-μm-Pitch super-resolution image sensor in 65-nm BSI CMOS[J]. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11(4): 794–803. doi: 10.1109/TBCAS.2017.2697451
    YIN C, LIAO Ting, LIU Kuanlin, et al. A 32-stage 15-b digital time-delay integration linear CMOS image sensor with data prediction switching technique[J]. IEEE Transactions on Electron Devices, 2017, 64(3): 1167–1173. doi: 10.1109/TED.2017.2655143
    KIM D and SONG M. An enhanced dynamic-range CMOS image sensor using a digital logarithmic single-slope ADC[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2012, 59(10): 653–657. doi: 10.1109/TCSII.2012.2213359
    JEON B K, HONG S K, and KWON O K. A low-power 10-bit single-slope ADC using power gating and multi-clocks for CMOS image sensors[C]. Proceedings of 2016 International SoC Design Conference, Jeju, South Korea, 2016: 257–258.
    SNOEIJ M F, THEUWISSEN A J P, MAKINWA K A A, et al. Multiple-ramp column-parallel ADC architectures for CMOS image sensors[J]. IEEE Journal of Solid-State Circuits, 2007, 42(12): 2968–2977. doi: 10.1109/JSSC.2007.908720
    PARK H, LEE J, KIM J, et al. High frame rate VGA CMOS image sensor using two-step single slope ADCs[C]. Proceedings of 2016 IEEE Asia Pacific Conference on Circuits and Systems, Jeju, South Korea, 2016: 571–572.
    LYU Nan, YU Ningmei, and ZHANG Hejiu. A high-speed column-parallel time-digital single-slope ADC for CMOS image sensors[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2016, E99-A(2): 555–559. doi: 10.1587/transfun.E99.A.555
    KIM D, SONG M, CHOE B, et al. A multi-resolution mode CMOS image sensor with a novel two-step single-slope ADC for intelligent surveillance systems[J]. Sensors, 2017, 17(7): E1497. doi: 10.3390/s17071497
    XIA Yu, NIE Kaiming, XU Jiangtao, et al. A two-step analog accumulator for CMOS TDI image sensor with temporal undersampling exposure method[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24(3): 1104–1117. doi: 10.1109/TVLSI.2015.2439262
    SHIRAI E. CMOS multistage preamplifier design for high-speed and high-resolution comparators[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2007, 54(2): 166–170. doi: 10.1109/TCSII.2006.883091
    ZHU Y, CHAN C H, CHIO U F, et al. A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2010, 45(6): 1111–1121. doi: 10.1109/JSSC.2010.2048498
    TANG Kai, MENG Qiao, WANG Zhigong, et al. A low power 20 GHz comparator in 90 nm COMS technology[J]. Journal of Semiconductors, 2014, 35(5): 055002. doi: 10.1088/1674-4926/35/5/055002
    RAZAVI B. The current-steering DAC[J]. IEEE Solid-State Circuits Magazine, 2018, 10(1): 11–15. doi: 10.1109/MSSC.2017.2771102
    MAO Wei, LI Yongfu, HENG C H, et al. High dynamic performance current-steering DAC design with nested-segment structure[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26(5): 995–999. doi: 10.1109/TVLSI.2018.2791462
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  2496
  • HTML全文浏览量:  1044
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-24
  • 修回日期:  2019-01-28
  • 网络出版日期:  2019-02-15
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回