高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于无迹卡尔曼滤波的iBeacon/INS数据融合定位算法

王守华 陆明炽 孙希延 纪元法 胡丁梅

王守华, 陆明炽, 孙希延, 纪元法, 胡丁梅. 基于无迹卡尔曼滤波的iBeacon/INS数据融合定位算法[J]. 电子与信息学报, 2019, 41(9): 2209-2216. doi: 10.11999/JEIT180748
引用本文: 王守华, 陆明炽, 孙希延, 纪元法, 胡丁梅. 基于无迹卡尔曼滤波的iBeacon/INS数据融合定位算法[J]. 电子与信息学报, 2019, 41(9): 2209-2216. doi: 10.11999/JEIT180748
Shouhua WANG, Mingchi LU, Xiyan SUN, Yuanfa JI, Dingmei HU. IBeacon/INS Data Fusion Location Algorithm Based on Unscented Kalman Filter[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2209-2216. doi: 10.11999/JEIT180748
Citation: Shouhua WANG, Mingchi LU, Xiyan SUN, Yuanfa JI, Dingmei HU. IBeacon/INS Data Fusion Location Algorithm Based on Unscented Kalman Filter[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2209-2216. doi: 10.11999/JEIT180748

基于无迹卡尔曼滤波的iBeacon/INS数据融合定位算法

doi: 10.11999/JEIT180748
基金项目: 国家重点研发计划(2018YFB0505103),广西自然科学基金(2018GXNSFAA050123),广西精密导航技术与应用重点实验室主任基金(DH201803),广西科技项目(AA17202033),桂林电子科技大学研究生教育创新计划项目(2018YJCX28)
详细信息
    作者简介:

    王守华:男,1975年生,副教授,研究方向为信号处理、卫星导航

    陆明炽:男,1990年生,硕士生,研究方向为室内导航、深度学习

    孙希延:女,1973年生,博士,研究方向为卫星导航和电子对抗

    纪元法:男,1975年生,博士,研究方向为卫星通信、卫星导航和数字信号处理

    胡丁梅:女,1995年生,硕士生,研究方向为室内导航、数据融合

    通讯作者:

    王守华 hwafly@guet.edu.cn

  • 中图分类号: TN965.72

IBeacon/INS Data Fusion Location Algorithm Based on Unscented Kalman Filter

Funds: The National Key R&D Program of China (2018YFB0505103), The Foundation of Guangxi Natural Science Foundation (2018GXNSFAA050123), The Foundation of Guangxi Key Laboratory of Precision Navigation Technology and Application (DH201803), The Department of Science and Technology of Guangxi Zhuang Autonomous Region (AA17202033), The Innovation Project of Guet Graduate Education (2018YJCX28)
  • 摘要: 针对微机电惯性导航系统(MEMS-INS)定位解算存在积累误差及低功耗蓝牙技术iBeacon指纹定位存在跳变误差等问题,该文提出一种基于无迹卡尔曼滤波器(UKF)的iBeacon/MEMS-INS数据融合定位算法。该算法对iBeacon锚点与定位目标的距离进行解算,利用加速度计和陀螺仪的数据实现姿态阵和位置解算。将蓝牙锚点位置向量、载体速度误差信息等组成状态量,将惯性导航定位信息和蓝牙定位距离信息等组成观测量,设计无迹卡尔曼滤波器,实现iBeacon/MEMS-INS数据融合定位。实验测试结果表明,该算法有效解决MEMS-INS存在较大积累误差及iBeacon指纹定位存在跳变误差的问题,可以实现1.5 m内的定位精度。
  • 图  1  iBceacon/MEMS-INS组合导航算法方案

    图  2  UKF数据融合定位算法流程图

    图  3  实验平台基本架构

    图  4  iBeacon信标布置平面示意图

    图  5  加速度对比

    图  6  3种方法的定位轨迹

    图  7  定位误差CDF

    表  1  3DM模块各项指标

    加速度计陀螺仪磁力计
    轴数333
    量程±8 g±1.700 °/s±1/104 特斯拉(T)
    数据更新频率100 Hz100 Hz100 Hz
    下载: 导出CSV

    表  2  多种方法的性能比较

    方法平均绝对位置误差(m)运行时间(ms)
    MEMS-INS6.7580.054
    iBeacon3.5230.023
    BLE/MEMS跨楼层1.5450.407
    iBeacon/MEMS-INS1.3150.468
    下载: 导出CSV
  • XU Yuan, CHEN Xiyuan, and LI Qinghua. Autonomous integrated navigation for indoor robots utilizing on-line iterated extended Rauch-Tung-striebel smoothing[J]. Sensors, 2013, 13(12): 15937–15953. doi: 10.3390/s131215937
    WIN M Z, DARDARI D, MOLISCH A F, et al. History and applications of UWB[scanning the issue][J]. Proceedings of the IEEE, 2009, 97(2): 198–204. doi: 10.1109/JPROC.2008.2008762
    CHAN E C L, BACIU G, and MAK S C. Using Wi-Fi signal strength to localize in wireless sensor networks[C]. Proceedings of 2009 WRI International Conference on Communications and Mobile Computing, Yunnan, China, 2009: 538–542.
    CASTILLO-CARA M, LOVON-MELGAREJO J, BRAVO-ROCCA G, et al. An empirical study of the transmission power setting for Bluetooth-based indoor localization mechanisms[J]. Sensors (Basel) , 2017, 17(6): 1318–1340. doi: 10.3390/s17061318
    CHENG Jiantong, YANG Ling, LI Yong, et al. Seamless outdoor/indoor navigation with WIFI/GPS aided low cost Inertial Navigation System[J]. Physical Communication, 2014, 13: 31–43. doi: 10.1016/j.phycom.2013.12.003
    ZHUANG Yuan and EL-SHEIMY N. Tightly-coupled integration of WiFi and MEMS sensors on handheld devices for indoor pedestrian navigation[J]. IEEE Sensors Journal, 2016, 16(1): 224–234. doi: 10.1109/JSEN.2015.2477444
    LIAO J K, CHIANG K W, and ZHOU Zhiming. The performance analysis of smartphone-based pedestrian dead reckoning and wireless locating technology for indoor navigation application[J]. Inventions, 2016, 1(4): 25–44. doi: 10.3390/inventions1040025
    WALTER C S, SEIFFERT S, VINCENT F, et al. Indoor navigation assistant for visually impaired by pedestrian dead reckoning and position estimative of correction for patterns pecognition[J]. IFAC PapersOnLine, 2016, 49(30): 167–170. doi: 10.1016/j.ifacol.2016.11.149
    宋丽君, 秦永元. MEMS加速度计的六位置测试法[J]. 测控技术, 2009, 28(7): 11–13. doi: 10.3969/j.issn.1000-8829.2009.07.004

    SONG Lijun and QIN Yongyuan. Six-position testing of MEMS accelerometer[J]. Measurement &Control Technology, 2009, 28(7): 11–13. doi: 10.3969/j.issn.1000-8829.2009.07.004
    CORREA A, DIAZ E M, AHMED D B, et al. Advanced pedestrian positioning system to smartphones and smartwatches[J]. Sensors, 2016, 16(11): 1903–1921. doi: 10.3390/s16111903
    NETO P, MENDES N, and MOREIRA A P. Kalman filter-based yaw angle estimation by fusing inertial and magnetic sensing: A case study using low cost sensors[J]. Sensor Review, 2015, 35(3): 244–250. doi: 10.1108/SR-10-2014-0723
    杨东勇, 顾东袁, 傅晓婕. 一种基于RSSI相似度的室内定位算法[J]. 传感技术学报, 2009, 22(2): 264–268. doi: 10.3969/j.issn.1004-1699.2009.02.025

    YANG Dongyong, GU Dongyuan, and FU Xiaojie. An indoor location algorithm base on RSSI-similarity degree[J]. Chinese Journal of Sensors and Actuators, 2009, 22(2): 264–268. doi: 10.3969/j.issn.1004-1699.2009.02.025
    PEI Ling, CHEN Ruizhi, LIU Jingbin, et al. Using inquiry-based Bluetooth RSSI probability distributions for indoor positioning[J]. Journal of Global Positioning Systems, 2010, 9(2): 122–130.
    李荣冰, 刘建业, 孙永荣. MEMS-IMU构型设计及惯性器件安装误差标定方法[J]. 中国惯性技术学报, 2007, 15(5): 526–529, 563. doi: 10.3969/j.issn.1005-6734.2007.05.005

    LI Rongbing, LIU Jianye, and SUN Yongrong. MEMS-IMU configuration and its inertial sensors’ calibration for installation errors[J]. Journal of Chinese Inertial Technology, 2007, 15(5): 526–529, 563. doi: 10.3969/j.issn.1005-6734.2007.05.005
    周牧, 王斌, 田增山, 等. 室内BLE/MEMS跨楼层融合定位算法[J]. 通信学报, 2017, 38(5): 1–10. doi: 10.3969/j.issn.1001-2400.2017.05.001

    ZHOU Mu, WANG Bin, TIAN Zengshan, et al. Indoor BLE and MEMS based multi-floor fusion positioning algorithm[J]. Journal on Communications, 2017, 38(5): 1–10. doi: 10.3969/j.issn.1001-2400.2017.05.001
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  3791
  • HTML全文浏览量:  1580
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-23
  • 修回日期:  2019-02-25
  • 网络出版日期:  2019-04-18
  • 刊出日期:  2019-09-10

目录

    /

    返回文章
    返回