高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超复数域小波变换的显著性检测

余映 吴青龙 邵凯旋 康迂星 杨鉴

余映, 吴青龙, 邵凯旋, 康迂星, 杨鉴. 超复数域小波变换的显著性检测[J]. 电子与信息学报, 2019, 41(9): 2231-2238. doi: 10.11999/JEIT180738
引用本文: 余映, 吴青龙, 邵凯旋, 康迂星, 杨鉴. 超复数域小波变换的显著性检测[J]. 电子与信息学报, 2019, 41(9): 2231-2238. doi: 10.11999/JEIT180738
Ying YU, Qinglong WU, Kaixuan SHAO, Yuxing KANG, Jian YANG. Saliency Detection Using Wavelet Transform in Hypercomplex Domain[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2231-2238. doi: 10.11999/JEIT180738
Citation: Ying YU, Qinglong WU, Kaixuan SHAO, Yuxing KANG, Jian YANG. Saliency Detection Using Wavelet Transform in Hypercomplex Domain[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2231-2238. doi: 10.11999/JEIT180738

超复数域小波变换的显著性检测

doi: 10.11999/JEIT180738
基金项目: 国家自然科学基金(61263048),云南省应用基础研究计划项目(2018FB102),云南大学“中青年骨干教师培养计划”(XT412003)
详细信息
    作者简介:

    余映:1977年生,副教授,研究方向为图像与视觉、人工神经网络

    吴青龙:1993年生,硕士生,研究方向为图像处理、计算机视觉

    邵凯旋:1993年生,硕士生,研究方向为图像处理、计算机视觉

    康迂星:1993年生,硕士生,研究方向为图像处理、压缩感知

    杨鉴:1964年生,教授,研究方向为语音信号处理、模式识别

    通讯作者:

    吴青龙 mywuqinglong6268@163.com

  • 中图分类号: TN911.73

Saliency Detection Using Wavelet Transform in Hypercomplex Domain

Funds: The National Natural Science Foundation of China (61263048), Yunnan Province Applied Basic Research Project (2018FB102), The “Young and Middle-Aged Backbone Teachers” Cultivation Plan of Yunnan University (XT412003)
  • 摘要: 针对现有频域显著性检测方法得到的显著区域不完整的问题,该文提出一种多尺度分析的频率域显著性检测方法。首先由输入图像特征通道信息构建4元超复数,然后通过小波变换对4元超复数域中幅度谱进行多尺度分解,计算生成多尺度下的视觉显著图,最后由评价函数选出效果较好显著图合成最终视觉显著图。实验结果表明,该文方法能够有效地抑制背景干扰,快速、精确地找到完整的显著目标,具有较高的检测精确度。
  • 图  1  算法模型流程图

    图  2  心理物理学模板对比

    图  3  人眼注视点显著图

    图  4  算法显著图对比

    图  5  算法评价曲线对比图

    表  1  注视点AUC得分

    注视点本文算法HFTPQFTSRITSUNMSSHC
    全部0.83280.80460.75700.62280.53650.67290.65580.5766
    2个0.88310.84020.76960.62740.54440.67460.66980.5853
    下载: 导出CSV

    表  2  自然图像AUC得分

    方法本文算法HFTSRITHC
    AUC0.92020.91180.67360.72520.9212
    下载: 导出CSV

    表  3  算法计算速度(s)

    方法本文算法HFTPQFTSRITSUNMSSHC
    时间0.08320.09360.01980.00810.26971.61850.07670.6585
    下载: 导出CSV
  • YAO Haishan and LI Chaoyi. Clustered organization of neurons with similar extra-receptive field properties in the primary visual cortex[J]. Neuron, 2002, 35(3): 547–553. doi: 10.1016/S0896-6273(02)00782-1
    ITTI L, KOCH C, and NIEBUR E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254–1259. doi: 10.1109/34.730558
    ITTI L and KOCH C. Computational modelling of visual attention[J]. Nature Reviews Neuroscience, 2001, 2(3): 194–203. doi: 10.1038/35058500
    ZHANG Lingyun, TONG M H, MARKS T K, et al. SUN: A Bayesian framework for saliency using natural statistics[J]. Journal of Vision, 2008, 8(7): 32, 1–20. doi: 10.1167/8.7.32
    ACHANTA R and SÜSSTRUNK S. Saliency detection using maximum symmetric surround[C]. 2010 IEEE International Conference on Image Processing, Hong Kong, China, 2010: 2653–2656.
    CHENG Mingming, ZHANG Guoxin, MITRA N J, et al. Global contrast based salient region detection[C]. CVPR 2011, Colorado Springs, USA, 2011: 409–416.
    CHENG Mingming, MITRA N J, HUANG Xiaolei, et al. Global contrast based salient region detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 569–582. doi: 10.1109/TPAMI.2014.2345401
    ZHANG Lihe, YANG Chuan, and LU Huchuan. Ranking saliency[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(9): 1892–1904. doi: 10.1109/TPAMI.2016.2609426
    AZAZA A and DOUIK A. Saliency detection based object proposal[C]. The 14th International Multi-Conference on Systems, Signals & Devices, Marrakech, Morocco, 2017: 597–600.
    WANG Wenguan and SHEN Jianbing. Deep visual attention prediction[J]. IEEE Transactions on Image Processing, 2018, 27(5): 2368–2378. doi: 10.1109/TIP.2017.2787612
    CAO Feilong, LIU Yuehua, and WANG Dianhui. Efficient saliency detection using convolutional neural networks with feature selection[J]. Information Sciences, 2018, 456: 34–49. doi: 10.1016/j.ins.2018.05.006
    吴泽民, 王军, 胡磊, 等. 基于卷积神经网络与全局优化的协同显著性检测[J]. 电子与信息学报, 2018, 40(12): 2896–2904. doi: 10.11999/JEIT180241

    WU Zemin, WANG Jun, HU Lei, et al. Co-saliency detection based on convolutional neural network and global optimization[J]. Journal of Electronics &Information Technology, 2018, 40(12): 2896–2904. doi: 10.11999/JEIT180241
    HOU Xiaodi and ZHANG Liqing. Saliency detection: A spectral residual approach[C]. 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, USA, 2007: 1–8.
    GUO Chenlei, MA Qi, and ZHANG Liming. Spatio-temporal saliency detection using phase spectrum of quaternion Fourier transform[C]. Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008: 1–8.
    LI Jian, LEVINE M D, AN Xiangjing, et al. Visual saliency based on scale-space analysis in the frequency domain[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(4): 996–1010. doi: 10.1109/TPAMI.2012.147
    SANGWINE S J. Fourier transforms of colour images using quaternion or hypercomplex, numbers[J]. Electronics Letters, 1996, 32(21): 1979–1980. doi: 10.1049/el:19961331
    ELL T A and SANGWINE S J. Hypercomplex Fourier transforms of color images[J]. IEEE Transactions on Image Processing, 2007, 16(1): 22–35. doi: 10.1109/TIP.2006.884955
    ANTONINI M, BARLAUD M, MATHIEU P, et al. Image coding using wavelet transform[J]. IEEE Transactions on Image Processing, 1992, 1(2): 205–220. doi: 10.1109/83.136597
    BIAN Peng and ZHANG Liming. Visual saliency: A biologically plausible contourlet-like frequency domain approach[J]. Cognitive Neurodynamics, 2010, 4(3): 189–198. doi: 10.1007/s11571-010-9122-0
    GOFERMAN S, ZELNIK-MANOR L, and TAL A. Context-aware saliency detection[C]. Processing of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2376–2383.
    GOFERMAN S, ZELNIK-MANOR L, and TAL A. Context-aware saliency detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10): 1915–1926. doi: 10.1109/TPAMI.2011.272
    DAVIS J and GOADRICH M. The relationship between precision-recall and ROC curves[C]. Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, USA, 2006: 233–240.
    BRUCE N D B and TSOTSOS J K. Saliency, attention, and visual search: An information theoretic approach[J]. Journal of Vision, 2009, 9(3): 5, 1–24. doi: 10.1167/9.3.5.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  3134
  • HTML全文浏览量:  1441
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-20
  • 修回日期:  2019-02-17
  • 网络出版日期:  2019-03-16
  • 刊出日期:  2019-09-10

目录

    /

    返回文章
    返回