高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类2次多项式混沌系统的均匀化方法研究

臧鸿雁 黄慧芳 柴宏玉

臧鸿雁, 黄慧芳, 柴宏玉. 一类2次多项式混沌系统的均匀化方法研究[J]. 电子与信息学报, 2019, 41(7): 1618-1624. doi: 10.11999/JEIT180735
引用本文: 臧鸿雁, 黄慧芳, 柴宏玉. 一类2次多项式混沌系统的均匀化方法研究[J]. 电子与信息学报, 2019, 41(7): 1618-1624. doi: 10.11999/JEIT180735
Hongyan ZANG, Huifang HUANG, Hongyu CHAI. Homogenization Method for the Quadratic Polynomial Chaotic System[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1618-1624. doi: 10.11999/JEIT180735
Citation: Hongyan ZANG, Huifang HUANG, Hongyu CHAI. Homogenization Method for the Quadratic Polynomial Chaotic System[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1618-1624. doi: 10.11999/JEIT180735

一类2次多项式混沌系统的均匀化方法研究

doi: 10.11999/JEIT180735
基金项目: 中央高校基本科研业务费专项基金(06108236)
详细信息
    作者简介:

    臧鸿雁:女,1973年生,副教授,研究方向为非线性系统统同步理论与混沌密码学

    黄慧芳:女,1991年生,讲师,研究方向为混沌密码学

    柴宏玉:女,1990年生,硕士生,研究方向为非线性系统统同步理论与混沌密码学

    通讯作者:

    黄慧芳 13661363592@163.com

  • 中图分类号: TN918.1

Homogenization Method for the Quadratic Polynomial Chaotic System

Funds: The Fundamental Research Funds for the Central Universities of China (06108236)
  • 摘要: 该文给出了一般的2次多项式混沌系统与Tent映射拓扑共轭的充分条件,并依据该条件,给出了一类2次多项式混沌系统及其概率密度函数;进一步得到了能够将这类系统均匀化的变换函数;给出了一个新的2次多项式混沌系统并进行均匀化处理,对其产生的序列进行了信息熵、Kolmogorov熵和离散熵分析,结果显示该均匀化方法的均匀化效果显著且不改变序列混沌程度。
  • 图  1  统计直方图

    图  2  均匀化前后系统K熵与离散熵对比图

    表  1  几个2次多项式混沌系统

    混沌系统$f(x)$概率密度均匀化系统$z(x)$$f(x)$信息熵$z(x)$信息熵
    $f(x) = \frac{7}{2}{x^2} + \frac{{33}}{{10}}x - \frac{{53}}{{200}}$$\frac{7}{{{\text{π}} \sqrt { - 49{x^2} + 46.2x + 5.11} }}$$z(x) = \frac{1}{{\text{π}} }\arcsin \left( { - \frac{7}{4}x - \frac{{33}}{{40}}} \right)$8.64708.9651
    $f(x) = \frac{5}{4}{x^2} - \frac{1}{2}x - \frac{{27}}{{20}}$$\frac{5}{{{\text{π}} \sqrt { - 25{x^2} + 10x + 63} }}$$z(x) = \frac{1}{{\text{π}} }\arcsin\left( { - \frac{5}{8}x + \frac{1}{8}} \right)$8.63808.9649
    $f(x) = - \frac{5}{2}{x^2} + 3x + \frac{1}{2}$$\frac{5}{{{\text{π}} \sqrt { - 25{x^2} + 30x + 7} }}$$z(x) = \frac{1}{{\text{π}} }\arcsin\left( {\frac{5}{4}x - \frac{3}{4}} \right)$8.64128.9650
    下载: 导出CSV

    表  2  系统均匀化前后的信息熵与最大熵比较

    $\left( {N,M} \right)$均匀化前
    信息熵
    均匀化后
    信息熵
    最大熵
    (500000, 100)6.35306.64376.6439
    (500000, 300)7.91378.22848.2288
    (500000, 500)8.64318.96518.9658
    下载: 导出CSV
  • LI T Y and YORKE J A. Period three implies chaos[J]. American Mathematical Monthly, 1975, 82(10): 985–992. doi: 10.1007/978-0-387-21830-4_6
    MANFREDI P, VANDE GINSTE D, STIEVANO I S, et al. Stochastic transmission line analysis via polynomial chaos methods: an overview[J]. IEEE Electromagnetic Compatibility Magazine, 2017, 6(3): 77–84. doi: 10.1109/memc.0.8093844
    KUMAR S, STRACHAN J P, and WILLIAMS R S. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing[J]. Nature, 2017, 548(7667): 318–321. doi: 10.1038/nature23307
    廖晓峰, 肖迪, 陈勇, 等. 混沌密码学原理及其应用[M]. 北京: 科学出版社, 2009: 16–40.

    LIAO Xiaofeng, XIAO Di, CHEN Yong, et al. Theory and Applications of Chaotic Cryptography[M]. Beijing: Science Press, 2009: 16–40.
    KOCAREV L and TASEV Z. Public-key encryption based on Chebyshev maps[C]. Proceedings of the 2003 International Symposium on Circuits and Systems, Bangkok, Thailand, 2003: 28–31.
    ROBINSON R C. An Introduction to Dynamical Systems: Continuous and Discrete[M]. Providence, Rhode Island: American Mathematical Society, 2012: 24–50.
    FRANK J and GOTTWALD G A. A note on statistical consistency of numerical integrators for multiscale dynamics[J]. Multiscale Modeling & Simulation, 2018, 16(2): 1017–1033. doi: 10.1137/17M1154709
    黄诚, 易本顺. 基于抛物线映射的混沌LT编码算法[J]. 电子与信息学报, 2009, 31(10): 2527–2531.

    HUANG Cheng and YI Benshun. Chaotic LT encoding algorithm based on parabolic map[J]. Journal of Electronics &Information Technology, 2009, 31(10): 2527–2531.
    曹光辉, 张兴, 贾旭. 基于混沌理论运行密钥长度可变的图像加密[J]. 计算机工程与应用, 2017, 53(13): 1–8. doi: 10.3778/j.issn.1002-8331.1703-0178

    CAO Guanghui, ZHANG Xing, and JIA Xu. Image encryption with variable-length running key based on chaotic theory[J]. Computer Engineering and Applications, 2017, 53(13): 1–8. doi: 10.3778/j.issn.1002-8331.1703-0178
    KOCAREV L, SZCZEPANSKI J, AMIGO J M, et al. Discrete chaos-I: theory[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2006, 53(6): 1300–1309. doi: 10.1109/TCSI.2006.874181
    AMIGÓ J M, KOCAREV L, and SZCZEPANSKI J. Theory and practice of chaotic cryptography[J]. Physics Letters A, 2007, 366(3): 211–216. doi: 10.1016/j.physleta.2007.02.021
    AMIGÓ J M, KOCAREV L, and TOMOVSKI I. Discrete entropy[J]. Physica D: Nonlinear Phenomena, 2007, 228(1): 77–85. doi: 10.1016/j.physd.2007.03.001
    臧鸿雁, 黄慧芳. 基于均匀化混沌系统生成S盒的算法研究[J]. 电子与信息学报, 2017, 39(3): 575–581. doi: 10.11999/JEIT160535

    ZANG Hongyan and HUANG Huifang. Research on algorithm of generating S-box based on uniform chaotic system[J]. Journal of Electronics &Information Technology, 2017, 39(3): 575–581. doi: 10.11999/JEIT160535
    周海玲, 宋恩彬. 二次多项式映射的3-周期点判定[J]. 四川大学学报: 自然科学版, 2009, 46(3): 561–564.

    ZHOU Hailing and SONG Enbin. Discrimination of the 3-periodic points of a quadratic polynomial[J]. Journal of Sichuan University:Natural Science Edition, 2009, 46(3): 561–564.
    COLLET P and ECKMANN J P. Iterated Maps on the Interval as Dynamical Systems[M]. Boston: Birkhäuser, 2009.
    郝柏林. 从抛物线谈起—混沌动力学引论[M]. 北京: 北京大学出版社, 2013: 114–118.

    HAO Bolin. Starting with Parabola: An Introduction to Chaotic Dynamics[M]. Beijing: Peking University Press, 2013: 114–118.
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  2161
  • HTML全文浏览量:  814
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-19
  • 修回日期:  2019-01-17
  • 网络出版日期:  2019-02-14
  • 刊出日期:  2019-07-01

目录

    /

    返回文章
    返回