高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于差族构造高斯整数周期互补序列

刘涛 许成谦 李玉博

刘涛, 许成谦, 李玉博. 基于差族构造高斯整数周期互补序列[J]. 电子与信息学报, 2019, 41(5): 1167-1172. doi: 10.11999/JEIT180646
引用本文: 刘涛, 许成谦, 李玉博. 基于差族构造高斯整数周期互补序列[J]. 电子与信息学报, 2019, 41(5): 1167-1172. doi: 10.11999/JEIT180646
Tao LIU, Chengqian XU, Yubo LI. Constructions of Gaussian Integer Periodic Complementary Sequences Based on Difference Families[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1167-1172. doi: 10.11999/JEIT180646
Citation: Tao LIU, Chengqian XU, Yubo LI. Constructions of Gaussian Integer Periodic Complementary Sequences Based on Difference Families[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1167-1172. doi: 10.11999/JEIT180646

基于差族构造高斯整数周期互补序列

doi: 10.11999/JEIT180646
基金项目: 国家自然科学基金项目(61501395, 61671402)
详细信息
    作者简介:

    刘涛:女,1987年生,博士生,研究方向为序列设计

    许成谦:男,1961年生,教授,博士生导师,研究方向为编码理论,密码学,信号设计

    李玉博:男,1985年生,副教授,硕士生导师,研究方向为序列设计,编码理论

    通讯作者:

    许成谦 cqxu@ysu.edu.cn

  • 中图分类号: TN911.2

Constructions of Gaussian Integer Periodic Complementary Sequences Based on Difference Families

Funds: The National Natural Science Foundation of China (61501395, 61671402)
  • 摘要:

    该文给出了基于差族的高斯整数互补序列构造方法。利用差族与互补序列之间的联系,首先推导出高斯整数互补序列存在的充分条件,进而直接构造了阶数为2的高斯整数互补序列。为进一步增加高斯整数互补序列数目,又利用映射方法构造了阶数为4的高斯整数互补序列。同传统的2元互补序列相比,高斯整数互补序列的存在数目很多,因此该文方法可以为通信系统提供大量的互补序列。

  • 表  1  满足式(6)的高斯整数

    ${\alpha _0}$${\alpha _1}$${\beta _0}$${\beta _1}$
    –2–110
    –2–112
    –211–2
    –2110
    –1–201
    –1–221
    –120–1
    –122–1
    1–2–21
    1–201
    12–2–1
    120–1
    2–1–10
    2–1–12
    21–1–2
    下载: 导出CSV
  • WANG Senhung and LI Chihpeng. Novel comb spectrum CDMA system using perfect Gaussian integer sequences[C]. 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 2015: 1–6.
    CHANG Ho Hsuan, LIN Shieh Chiang and LEE Chongdao. A CDMA scheme based on perfect Gaussian integer sequences[J]. International Journal of Electronics and Communications, 2017, 75(2017): 70–81. doi: 10.1016/j.aeue.2017.03.008
    WANG Senhung, LI Chihpeng, and CHANG Hohsuan, et al. A systematic method for constructing sparse Gaussian integer sequences with ideal periodic autocorrelation functions[J]. IEEE Transactions on Communications, 2016, 64(1): 365–376. doi: 10.1109/TCOMM.2015.2498185
    LI Chihpeng, WANG Senhung, and WANG Chinliang. Novel low complexity SLM schemes for PAPR reduction in OFDM systems[J]. IEEE Transactions on Signal Processing, 2010, 58(5): 2916–2921. doi: 10.1109/TSP.2010.2043142
    HU Weiwen, WANG Senhung, and LI Chihpeng. Gaussian integer sequences with ideal periodic autocorrelation functions[J]. IEEE Transactions on Signal Processing, 2012, 60(11): 6074–6079. doi: 10.1109/TSP.2012.2210550
    YANG Yang, TANG Xiaohu, and ZHOU Zhengchun. Perfect Gaussian integer sequences of odd prime length[J]. IEEE Signal Processing Letters, 2012, 19(10): 615–618. doi: 10.1109/LSP.2012.2209642
    MA Xiu Wen, WEN Qiao Yan, ZHANG Jie, et al. New perfect Gaussian integer sequences of periodic pq[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2013, E96-A(11): 2290–2293. doi: 10.1587/transfun.E96.A.2290
    PEI Soochang and CHANG Kuowei. Perfect Gaussian integer sequences of arbitrary length[J]. IEEE Signal Processing Letters, 2015, 22(8): 1040–1044. doi: 10.1109/LSP.2014.2381642
    CHANG Hohsuan, LI Chihpeng, LEE Chongdao, et al. Perfect Gaussian integer sequences of arbitrary composite length[J]. IEEE Transactions on Information Theory, 2015, 61(7): 4107–4115. doi: 10.1109/TIT.2015.2438828
    CHEN Xinjiao, LI Chunlei, and RONG Chunming. Perfect Gaussian integer sequences from cyclic difference sets[C]. 2016 IEEE International Symposium on Information Theory (ISIT), 2016: 115–119.
    LEE Chongdao, HUANG Yupei, CHANG Yaostu, et al. Perfect Gaussian integer sequences of odd period 2m-1[J]. IEEE Signal Processing Letters, 2015, 22(7): 881–885. doi: 10.1109/LSP.2014.2375313
    Lee Chongdao, LI Chihpeng, and CHANG Hohsuan, et al. Further results on degree-2 perfect Gaussian integer sequences[J]. IET Communications, 2016, 10(12): 1542–1552. doi: 10.1049/iet-com.2015.1144
    陈晓玉, 许成谦, 李玉博. 新的完备高斯整数序列的构造方法[J]. 电子与信息学报, 2014, 36(9): 2081–2085. doi: 10.3724/SP.J.1146.2013.01697

    CHEN Xiaoyu, XU Chengqian, and LI Yubo. New Constructions of perfect Gaussian integer sequences[J]. Journal of Electronics &Information Technology, 2014, 36(9): 2081–2085. doi: 10.3724/SP.J.1146.2013.01697
    LI Yubo, TIAN Liying, and LIU Tao. Nearly perfect Gaussian integer sequences with arbitrary degree[J]. IET Communications, 2018, 12(9): 1123–1127. doi: 10.1049/iet-com.2017.1274
    LI Chihpeng, CHANG Kuojen, CHANG Hohsuan, et al. Perfect sequences of odd prime length[J]. IEEE Signal Processing Letters, 2018, 25(7): 966–969. doi: 10.1109/LSP.2018.2832719
    柯品惠, 胡电芬, 常祖领. 周期为p2的完备高斯整数序列的新构造[J]. 工程数学学报, 2018, 35(3): 319–328. doi: 10.3969/j.issn.1005-3085.2018.03.007

    KE Pinhui, HU Dianfen, and CHANG Zuling. New construction of perfect Gaussian integer sequence with period p2[J]. Chinese Journal of Engineering Mathematics, 2018, 35(3): 319–328. doi: 10.3969/j.issn.1005-3085.2018.03.007
    刘凯, 姜昆. 交织法构造高斯整数零相关区序列集[J]. 电子与信息学报, 2017, 39(2): 328–334. doi: 10.11999/JEIT160276

    LIU Kai and JIANG Kun. Construction of Gaussian integer sequence sets with zero correlation zone based on interleaving technique[J]. Journal of Electronics &Information Technology, 2017, 39(2): 328–334. doi: 10.11999/JEIT160276
    刘凯, 陈盼盼. 最佳及几乎最佳高斯整数ZCZ序列集的构造[J]. 电子学报, 2018, 46(3): 755–760. doi: 10.3969/j.issn.0372-2112.2018.03.034

    LIU Kai and CHEN Panpan. Constructions of optimal of almost optimal Gaussian integer ZCZ sequence sets[J]. Acta Electronica Sinica, 2018, 46(3): 755–760. doi: 10.3969/j.issn.0372-2112.2018.03.034
    BOMER Leopold and ANTWEILER Markus. Periodic complementary binary sequences[J]. IEEE Transactions on Information Theory, 1990, 36(6): 1487–1494. doi: 10.1109/18.59954
    TSENG Chin-Chong. Complementary sets of sequences[J]. IEEE Transactions on Information Theory, 1972, 18(5): 644–652. doi: 10.1109/TIT.1972.1054860
    LI Xudong, LIU Zilong, GUAN Yongliang, et al. Two valued periodic complementary sequences[J]. IEEE Signal Processing Letters, 2017, 24(9): 1270–1274. doi: 10.1109/LSP.2017.2722423
    DING Cunsheng. Two Constructions of (v, (v-1)/2, (v-3)/2) difference families[J]. Journal of Combinatorial Designs, 2008, 16: 164–171. doi: 10.1002/jcd.20159
  • 加载中
表(1)
计量
  • 文章访问数:  1677
  • HTML全文浏览量:  653
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-02
  • 修回日期:  2018-12-17
  • 网络出版日期:  2019-01-07
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回