高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抑制脉冲型噪声的限幅器自适应设计

罗忠涛 卢鹏 张杨勇 张刚

罗忠涛, 卢鹏, 张杨勇, 张刚. 抑制脉冲型噪声的限幅器自适应设计[J]. 电子与信息学报, 2019, 41(5): 1160-1166. doi: 10.11999/JEIT180609
引用本文: 罗忠涛, 卢鹏, 张杨勇, 张刚. 抑制脉冲型噪声的限幅器自适应设计[J]. 电子与信息学报, 2019, 41(5): 1160-1166. doi: 10.11999/JEIT180609
Zhongtao LUO, Peng LU, Yangyong ZHANG, Gang ZHANG. Adaptive Design of Limiters for Impulsive Noise Suppression[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1160-1166. doi: 10.11999/JEIT180609
Citation: Zhongtao LUO, Peng LU, Yangyong ZHANG, Gang ZHANG. Adaptive Design of Limiters for Impulsive Noise Suppression[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1160-1166. doi: 10.11999/JEIT180609

抑制脉冲型噪声的限幅器自适应设计

doi: 10.11999/JEIT180609
基金项目: 国家自然科学基金(61701067, 61771085, 61671095),重庆市教育委员会科研基金(KJ1600427, KJ1600429)
详细信息
    作者简介:

    罗忠涛:男,1984年生,讲师,硕士生导师,研究方向为统计信号处理与数字图像处理

    卢鹏:男,1994年生,硕士生,研究方向为低频噪声分析与低频通信信号处理

    张杨勇:男,1983生年,高级工程师,研究方向为低频通信技术与信号处理

    张刚:男,1976生年,副教授,硕士生导师,研究方向为微弱信号检测与混沌信号处理

    通讯作者:

    罗忠涛 luozt@cqupt.edu.cn

  • 中图分类号: TN911

Adaptive Design of Limiters for Impulsive Noise Suppression

Funds: The National Natural Science Foundation of China (61701067, 61771085, 61671095), The Scientific Research Foundation of the Chongqing Education Committee (KJ1600427, KJ1600429)
  • 摘要:

    针对脉冲型噪声的抑制问题,该文提出一种自适应的限幅器设计方法。该方法以效能函数为指标,采用自适应搜索算法,自动寻找削波器和置零器的最佳门限,且能适用于未知噪声分布的情形。首先分析了效能与非线性函数的关系,给出关键的优化问题。然后考虑到效能函数计算复杂,提出基于线搜索的自适应设计算法。其次针对未知分布情况,考虑非参数化的概率密度估计,该算法能够稳健运行且基本取得最优设计效果。最后,结合两种非高斯噪声和实测大气噪声数据仿真,结果表明:该文方法可自适应寻找最佳门限,使削波器和置零器效能达到最佳;当噪声分布未知时,该文方法无需假设噪声模型,可与非参数化概率密度估计方法结合,取得最优检测效果。

  • 图  1  $\rm S{α} S$分布下的门限-效能变化,$\alpha $=1.5,$\gamma $=1

    图  2  $\rm S{α}S$分布下PDF的导数及效能函数图,$\alpha $=1.5, $\gamma $=1

    图  3  $\rm S{α} S$噪声下的ZMNL函数,$\gamma $=1

    图  4  ${\rm S}{α} {\rm S}$分布下设计限幅器的两种性能曲线,$\gamma $=1

    图  5  实测数据的误码率性能

    表  1  限幅器的自适应优化处理算法

     步骤 1 设置初始值${\tau _0} > 0$,初始步长${d_0} = 0.5{\tau _0}$,迭代次数
    $k = 0$,计算效能值${\eta _0} = \eta (g, f, {\tau _0})$;
     步骤 2 令${\tau _{k + 1}} = {\tau _k} + {d_k}$,并计算效能值${\eta _{k{\rm{ + 1}}}} = \eta (g, f, {\tau _{k + 1}})$。若
    ${\eta _{k{\rm{ + 1}}}} > {\eta _k}$,转步骤3;否则,转步骤4;
     步骤 3 正向搜索。令${d_{k + 1}} = 2{d_k}$, $\tau = {\tau _k}$, ${\tau _k} = {\tau _{k + 1}}$, ${\eta _k} = {\eta _{k{\rm{ + 1}}}}$,
    $k = k + 1$,转步骤2;
     步骤 4 反向搜索。若$k = 0$,则令${d_1} = - {d_0}$, $\tau = {\tau _1}$, ${\tau _1} = {\tau _0}$,
    ${\eta _1} = {\eta _0}$, $k = 1$,转步骤2;否则,停止迭代;
     步骤 5 设置线搜索参数,容许误差比率$\lambda $。迭代次数j=0;令
    ${l_0} = {\rm{min}}\{ \tau, {\tau _{k + 1}}\} $, ${r_0} = {\rm{max}}\{ \tau, {\tau _{k + 1}}\} $, ${p_0} = {l_0} $
    $ 0.382\left( {{r_0} - {l_0}} \right)$, ${q_0} = {l_0} + 0.618\left( {{r_0} - {l_0}} \right)$;
     步骤 6 条件判断。若$\eta (g, f, {p_j}) \ge \eta (g, f, {q_j})$,转步骤7,否则转
    步骤8;
     步骤 7 计算左试探点。若$|{q_j} - {l_j}|/{r_j} > \lambda $,则令${l_{j + 1}} = {l_j}$, ${r_{j + 1}} $
    $ ={q_j}$, $\eta (g, f, {q_{j + 1}}) = \eta (g, f, {p_j})$, ${q_{j + 1}} = {p_j}$, ${p_{j + 1}} = $
    $ {l_{j + 1}} + 0.382({r_{j + 1}} - {l_{j + 1}})$,计算效能值$\eta (g, f, {p_{j + 1}})$,
    $j = j + 1$,转步骤6;否则,停止搜索并
    输出最佳门限值${p_j}$;
     步骤 8 计算右试探点。若$|{r_j} - {p_j}{\rm{|/}}{r_j} > \lambda $,则令${l_{j + 1}} = {p_j}$, ${r_{j + 1}} $
    $={r_j}$, $\eta (g, f, {p_{j + 1}}) = \eta (g, f, {q_j})$, ${p_{j + 1}} = {q_j}$, ${q_{j + 1}} =$
    $ {l_{j + 1}} + 0.618({r_{j + 1}} - {l_{j + 1}})$,计算效能值$\eta (g, f, {q_{j + 1}})$,
    $j = j + 1$,转步骤6;否则,停止搜索并输
    出最佳门限值${q_j}$。
    下载: 导出CSV

    表  2  Class A分布下(${A}{,} {Γ} $)-${τ} $变化,${{σ}^2}$=1

    $A, {\rm{ }}\varGamma $$0.1, {\rm{ }}{10^{ - 3}}$$0.35, {\rm{ }}{10^{ - 3}}$$0.5, {\rm{ }}{10^{ - 3}}$$0.1, {\rm{ }}{10^{ - 2}}$$0.35, {\rm{ }}{10^{ - 2}}$$0.5, {\rm{ }}{10^{ - 2}}$
    ${\tau _{{\rm{opt\_}}b}}{\rm{ - PDF}}$(${\eta _{{\rm{opt\_}}b}}$)0.1296(888.8429)0.1094(647.4406)0.0996(532.3140)0.3397(87.5188)0.2898(59.1912)0.2698(46.5176)
    ${\tau _{{\rm{opt\_}}c}}{\rm{ - PDF}}$(${\eta _{{\rm{opt\_}}c}}$)0.0386(671.5877)0.0232(356.9533)0.0188(257.2668)0.1181(69.5440)0.0743(38.4601)0.0623(28.4378)
    ${\tau _{{\rm{opt\_}}b}}{\rm{ - KDE}}$(${\eta _{{\rm{opt\_}}b}}$)0.1199(877.9385)0.1094(631.7642)0.0994(510.9088)0.3494(85.5270)0.2937(57.2562)0.2708(43.9273)
    ${\tau _{{\rm{opt\_}}c}}{\rm{ - KDE}}$(${\eta _{{\rm{opt\_}}c}}$)0.0396(665.3161)0.0239(349.5658)0.0197(247.0483)0.1197(68.3936)0.0786(36.7663)0.0651(26.4190)
    下载: 导出CSV

    表  3  $\rm S{α} S$分布下限幅器自适应设计方法迭代次数

    $\alpha $1.11.21.31.41.51.61.71.81.9
    Iterb-PDF151515151515151515
    Iterc-PDF171717161616161515
    Iterb-KDE151515151515151514
    Iterc-KDE171717161616161515
    下载: 导出CSV
  • KAY S M. Fundamentals of Statistical Signal Processing, Volume II: Detection Theory[M]. Englewood Cliffs, USA: Prentice-Hall, Inc., 1993: 94–115.
    DAVIS R R and CLAVIER O. Impulsive noise: A brief review[J]. Elsevier Hearing Research, 2017, 349: 34–36. doi: 10.1016/j.heares.2016.10.020
    LI Xutao, SUN Jun, WANG Shouyong, et al. Near-optimal detection with constant false alarm ratio in varying impulsive interference[J]. IET Signal Processing, 2013, 7(9): 824–832. doi: 10.1049/iet-spr.2013.0024
    MILLER J and THOMAS J. Detectors for discrete-time signals in non-Gaussian noise[J]. IEEE Transactions on Information Theory, 1972, 18(2): 241–250. doi: 10.1109/TIT.1972.1054787
    VADALI S R K, RAY P, MULA S, et al. Linear detection of a weak signal in additive Cauchy noise[J]. IEEE Transactions on Communications, 2017, 65(3): 1061–1076. doi: 10.1109/TCOMM.2016.2647599
    WANG Pingbo, LIU Feng, CAI Zhiming, et al. G-Filter's Gaussianization function for interference background[C]. International Conference on Signal Acquisition and Processing, Nanjing, China, 2010: 76–79.
    罗忠涛, 卢鹏, 张杨勇, 等. 基于高斯化-广义匹配的脉冲型噪声处理方法研究[J]. 电子与信息学报, 2018, 40(12): 2928–2935. doi: 10.11999/JEIT180191

    LUO Zhongtao, LU Peng, ZHANG Yangyong, et al. A novel method for nonlinear processing in impulsive noise based on gaussianization and generalized matching[J]. Journal of Electronics &Information Technology, 2018, 40(12): 2928–2935. doi: 10.11999/JEIT180191
    OH H and NAM H. Design and performance analysis of nonlinearity preprocessors in an impulsive noise environment[J]. IEEE Transactions on Vehicular Technology, 2017, 66(1): 364–376. doi: 10.1109/TVT.2016.2547889
    OH H, NAM H, and PARK S. Adaptive threshold blanker in an impulsive noise environment[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(5): 1045–1052. doi: 10.1109/TEMC.2014.2311853
    KOLODZIEJSKI K R and BETZ J W. Detection of weak random signals in IID non-Gaussian noise[J]. IEEE Transactions on Communications, 2000, 48(2): 222–230. doi: 10.1109/26.823555.doi:10.1109/26.823555
    ZHANG Guoyong, WANG Jun, YANG Guosheng, et al. Nonlinear processing for correlation detection in symmetric alpha-stable noise[J]. IEEE Signal Processing Letters, 2018, 25(1): 120–124. doi: 10.1109/LSP.2017.2776317
    张杨勇, 刘勇. 低频段大气噪声及处理技术[J]. 舰船科学技术, 2008, 30(S1): 85–88. doi: 10.3404/j.issn.1672-7649.2008.S021

    ZHANG Yangyong and LIU Yong. Atmospheric-noise at low frequency and its processing technique[J]. Ship Science &Technology, 2008, 30(S1): 85–88. doi: 10.3404/j.issn.1672-7649.2008.S021
    MODESTINO J W and NINGO A Y. Detection of weak signals in narrowband non-Gaussian noise[J]. IEEE Transactions on Information Theory, 1979, 25(5): 592–600. doi: 10.1109/TIT.1979.1056086
    KURUOGLU E E, FITZGERALD W J, and RAYNER P J W. Near optimal detection of signals in impulsive noise modeled with a symmetric alpha-stable distribution[J]. IEEE Communications Letters, 1998, 2(10): 282–284. doi: 10.1109/4234.725224
    VASTOLA K. Threshold detection in narrow-band non-Gaussian noise[J]. IEEE Transactions on Communications, 1984, 32(2): 134–139. doi: 10.1109/TCOM.1984.1096037
    CHONG E K D and ZAK S H. An Introduction to Optimization[M]. Hoboken, New Jersey: John Wiley & Sons, 2014: 105–108.
    NOCEDAL J and WRIGHT S J. Numerical Optimization[M]. New York NY, US: Springer-Verlag Inc., 1999: 35–62.
    SCALES L E. Introduction to Non-Linear Optimization[M]. London, UK: Macmillan Publishers, 1985: 31–34.
    SAMIUDDIN M and EL-SAYYAD G M. On nonparametric kernel density estimates[J]. Biometrika, 1990, 77(4): 865–874. doi: 10.1093/77.4.865
    SILVERMAN B W. Density Estimation for Statistics and Data Analysis[M]. London, UK: Chapman & Hall, 1986: 45–48.
    HE Jiai, DU Panpan, and CHEN Xing. Parameter estimation of communication signal in alpha-stable distribution noise environment[C]. Computational Intelligence and Security, Hong Kong, China, 2017: 15–18.
    BIBALAN M H, AMINDAVAR H, and AMIRMAZLAGHANI M. Characteristic function based parameter estimation of skewed alpha-stable distribution: An analytical approach[J]. Elsevier Signal Processing, 2017, 130: 323–336. doi: 10.1016/j.sigpro.2016.07.020
    MIDDLETON D. Procedures for determining the parameters of the first-order canonical models of Class A and Class B electromagnetic interference[J]. IEEE Transactions on Electromagnetic Compatibility, 2007, 21(3): 190–208. doi: 10.1109/TEMC.1979.303731
    AXELL E, ELIARDSSON P, TENGSTRAND S, et al. Power control in interference channels with Class A impulse noise[J]. IEEE Wireless Communications Letters, 2017, 6(1): 102–105. doi: 10.1109/LWC.2016.2634529
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  1711
  • HTML全文浏览量:  601
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-22
  • 修回日期:  2018-12-14
  • 网络出版日期:  2018-12-24
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回