高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于接收信号强度非齐性分布特征的半监督学习室内定位指纹库构建

李世宝 王升志 刘建航 黄庭培 张鑫

李世宝, 王升志, 刘建航, 黄庭培, 张鑫. 基于接收信号强度非齐性分布特征的半监督学习室内定位指纹库构建[J]. 电子与信息学报, 2019, 41(10): 2302-2309. doi: 10.11999/JEIT180599
引用本文: 李世宝, 王升志, 刘建航, 黄庭培, 张鑫. 基于接收信号强度非齐性分布特征的半监督学习室内定位指纹库构建[J]. 电子与信息学报, 2019, 41(10): 2302-2309. doi: 10.11999/JEIT180599
Shibao LI, Shengzhi WANG, Jianhang LIU, Tingpei HUANG, Xin ZHANG. Semi-supervised Indoor Fingerprint Database Construction Method Based on the Nonhomogeneous Distribution Characteristic of Received Signal Strength[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2302-2309. doi: 10.11999/JEIT180599
Citation: Shibao LI, Shengzhi WANG, Jianhang LIU, Tingpei HUANG, Xin ZHANG. Semi-supervised Indoor Fingerprint Database Construction Method Based on the Nonhomogeneous Distribution Characteristic of Received Signal Strength[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2302-2309. doi: 10.11999/JEIT180599

基于接收信号强度非齐性分布特征的半监督学习室内定位指纹库构建

doi: 10.11999/JEIT180599
基金项目: 国家自然科学基金(61972417, 61601519, 61872385),中央高校基本科研业务费专项资金(18CX02134A, 18CX02137A, 18CX02133A,19CX05003A-4)
详细信息
    作者简介:

    李世宝:男,1978年生,副教授,研究方向为移动计算、无线传感器网络、干扰对齐等

    王升志:男,1994年生,硕士生,研究方向为无线定位技术

    刘建航:男,1978年生,副教授、博士,研究方向为无线局域网、车联网

    黄庭培:女,1980年生,讲师、博士,研究方向为无线传感器网络

    张鑫:男,1993年生,硕士生,研究方向为无线定位技术

    通讯作者:

    李世宝 lishibao@upc.edu.cn

  • 中图分类号: TN929.5

Semi-supervised Indoor Fingerprint Database Construction Method Based on the Nonhomogeneous Distribution Characteristic of Received Signal Strength

Funds: The National Natural Science Foundation of China (61972417, 61601519, 61872385), The Fundamental Research Funds for the Central Universities (18CX02134A, 18CX02137A, 18CX02133A, 19CX05003A-4)
  • 摘要: 室内定位中半监督学习的指纹库构建方法能够降低人力开销,但忽略了高维接收信号强度(RSS)数据不均匀的非齐分布特点,影响定位精度,针对此问题该文提出一种基于RSS非齐性分布特征的半监督流形对齐指纹库构建方法。该算法运用局部RSS尺度参数以及共享近邻相似性构造权重矩阵,得到精确反映RSS数据流形结构的权重图,利用该权重图通过求解流形对齐的目标函数最优解,实现运用少量标记数据对大量未标记数据的位置标定。实验结果表明,该算法可以显著降低离线阶段数据采集的工作量,同时可以取得较高的定位精度。
  • 图  1  RSS非齐性分布示意图

    图  2  3个数据集RSS数据疏密分布

    图  3  TUT数据集各参考点RSS疏密程度

    图  4  3个房间的RSS数据在LDA下2维空间分布

    图  5  算法示意图

    图  6  实验环境平面图

    图  7  不同算法定位性能

    图  8  不同比例指纹数下的定位精度下降比率

    图  9  不同算法构建指纹库时间消耗

    图  10  AP个数对定位精度的影响

    图  11  共同近邻相似性中邻居数对定位性能影响

  • MELAMED R. Indoor localization: Challenges and opportunities[C]. 2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems, Austin, USA, 2016: 1–2.
    徐玉滨, 邓志安, 马琳. 基于核直接判别分析和支持向量回归的WLAN室内定位算法[J]. 电子与信息学报, 2011, 33(4): 896–901. doi: 10.3724/SP.J.1146.2010.00813

    XU Yubin, DENG Zhian, and MA Lin. WLAN indoor positioning algorithm based on KDDA and SVR[J]. Journal of Electronics &Information Technology, 2011, 33(4): 896–901. doi: 10.3724/SP.J.1146.2010.00813
    KHALAJMEHRABADI A, GATSIS N, and AKOPIAN D. Modern WLAN fingerprinting indoor positioning methods and deployment challenges[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1974–2002. doi: 10.1109/COMST.2017.2671454
    JI Yiming, BIAZ S, PANDEY S, et al. ARIADNE: A dynamic indoor signal map construction and localization system[C]. The 4th International Conference on Mobile Systems, Applications and Services, Uppsala, Sweden, 2006: 151–164.
    OUYANG R W, WONG K K S, LEA C T, et al. Indoor location estimation with reduced calibration exploiting unlabeled data via hybrid generative/discriminative learning[J]. IEEE Transactions on Mobile Computing, 2012, 11(11): 1613–1626. doi: 10.1109/TMC.2011.193
    SOROUR S, LOSTANLEN Y, VALAEE S, et al. Joint indoor localization and radio map construction with limited deployment load[J]. IEEE Transactions on Mobile Computing, 2015, 14(5): 1031–1043. doi: 10.1109/TMC.2014.2343636
    ZHOU Mu, TANG Yunxia, TIAN Zengshan, et al. Semi-supervised learning for indoor hybrid fingerprint database calibration with low effort[J]. IEEE Access, 2017, 5: 4388–4400. doi: 10.1109/ACCESS.2017.2678603
    WANG Jin, TAN N, LUO Jun, et al. WOLoc: WiFi-only outdoor localization using crowdsensed hotspot labels[C]. IEEE Conference on Computer Communications, Atlanta, GA, USA, 2017: 1–9.
    CHAPELLE O and ZIEN A. Semi-supervised classification by low density separation[C]. The Tenth International Workshop on Artificial Intelligence and Statistics, Bridgetown, Barbados, 2005: 57–64.
    STEVENS J R, RESMINI R G, and MESSINGER D W. Spectral-density-based graph construction techniques for hyperspectral image analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10): 5966–5983. doi: 10.1109/TGRS.2017.2718547
    ZHU Manli and MARTINEZ A M. Pruning noisy bases in discriminant analysis[J]. IEEE Transactions on Neural Networks, 2008, 19(1): 148–157. doi: 10.1109/TNN.2007.904040
    RODRIGUEZ A and LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492–1496. doi: 10.1126/science.1242072
    LOHAN E S, TORRES-SOSPEDRA J, LEPPÄKOSKI H, et al. Wi-Fi crowdsourced fingerprinting dataset for indoor positioning[J]. Data, 2017, 2(4): 32. doi: 10.3390/data2040032
    TORRES-SOSPEDRA J, MONTOLIU R, MARTíNEZ-USó A, et al. UJIIndoorLoc: A new multi-building and multi-floor database for WLAN fingerprint-based indoor localization problems[C]. 2014 International Conference on Indoor Positioning and Indoor Navigation, Busan, South Korea, 2014: 261–270.
    ZELNIK-MANOR L and PERONA P. Self-tuning spectral clustering[C]. Advances in Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2005: 1601–1608.
    TORRES-SOSPEDRA J, MONTOLIU R, TRILLES S, et al. Comprehensive analysis of distance and similarity measures for Wi-Fi fingerprinting indoor positioning systems[J]. Expert Systems with Applications, 2015, 42(23): 9263–9278. doi: 10.1016/j.eswa.2015.08.013
    BELKIN M and NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6): 1373–1396. doi: 10.1162/089976603321780317
    HAM J, LEE D D and SAUL L K. Semisupervised alignment of manifolds[C]. The Tenth International Workshop on Artificial Intelligence and Statistics, Bridgetown, Barbados, 2005: 120–127.
    BAHL P and PADMANABHAN V N. RADAR: An in-building RF-based user location and tracking system[C]. The Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Tel Aviv, Israel, 2000, 2: 775–784.
  • 加载中
图(11)
计量
  • 文章访问数:  3314
  • HTML全文浏览量:  916
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-20
  • 修回日期:  2019-02-28
  • 网络出版日期:  2019-03-30
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回