Research on Spaceborne High Resolution Wide Swath Imaging Method Based on Relax Algorithm
-
摘要:
现代星载合成孔径雷达(SAR)系统要求同时具备高分辨率和宽测绘带的能力,而传统单通道星载SAR系统在分辨率和测绘带两个重要指标之间存在固有矛盾,因此方位向多通道的方法被提出并用于解决上述问题。该文在分析方位向多通道回波模型的基础上,结合Relax算法的特点,提出了一种基于Relax算法的星载SAR高分宽幅(HRWS)成像方法,并给出了新方法的详细迭代流程。通过点目标回波仿真,并与传统的方位向多通道HRWS重建方法进行对比,验证了新方法的可靠性和有效性。
Abstract:The modern spaceborne SAR system requires both high resolution and wide swath, and the conventional single channel spaceborne SAR system has a contradiction between the two important indexes, the azimuth multichannel method is proposed and used to solve the above problem. Based on the analysis of the azimuth multichannel echo model and the characteristics of the Relax algorithm, a spaceborne SAR High Resolution Wide Swath (HRWS) imaging method is proposed, and the iterative process of the new method is described in detail. By the simulation of point target echo, and comparing with the traditional azimuth multichannel HRWS reconstruction methods, the reliability and effectiveness of the proposed method are verified.
-
表 1 公式中用到的符号说明
符号 说明 $M$ 通道个数 $r$ 距离变量,$r = {\rm c}t/2$ c 光速 $t$ 距离向时间变量 ${f_{\rm d}}$ 多普勒频率 $\vartheta $ 目标参数向量,$\vartheta = {[{T_0}, {R_0}, {\sigma ^2}, \varTheta ]^{\rm{T}}}$ ${T_0}$ 最小斜距对应的时间 ${R_0}$ 最小斜距$\min \{ R(T\,)\} = R({T_0}) = {R_0}$ ${\sigma ^2}$ 目标功率 $\varTheta $ 目标相位 ${f\!_{p}}$ 各通道的脉冲重复频率 $\varOmega $ 2次相位项的变化率 $R(T\,)$ 雷达与目标之间的距离 $T\,$ 慢时间变量 ${{u}}[{f_{\rm d}}, \vartheta ]$ 天线与目标间的瞄准线向量 ${A_m}$ 第$m$个通道的双向天线方向图 ${d_m}$ 第$m$个通道的等效相位中心 表 2 基于Relax算法的模糊抑制
For $m = 1: \rm Na$ For $n = 1:{\rm Nr}$
%遍历所有距离-多普勒单元(其中,$\rm Na$表示多普勒单元的个数,
$\rm Nr$表示距离单元的个数)
${Z_{{\rm{rec_{-}1}}}}(r, {f_{\rm d}} + p{f\!_{p}}) = \frac{{{{a}}_p^{\rm{H}}\left( {{f_{\rm d}}} \right){{Z}}\left( {r, {f_{\rm d}}} \right)}}{M}$ %初始化操作
%第1次迭代
$\begin{align}{{{Z}}_{p_{-}1}}\left( {r, {f_{\rm d}}} \right) =& {{Z}}\left( {r, {f_{\rm d}}} \right) \\&- \sum\limits_{i = - \left( {M - 1} \right)/2, i \ne p}^{\left( {M - 1} \right)/2} {{{{a}}_i}\left( {{f_{\rm d}}} \right)} \cdot {Z_{{\rm{rec_{-}1}}}}\left( {r, {f_{\rm d}} + p{f\!_{p}}} \right)\end{align}$
${\hat Z_{{\rm{rec_{-}1}}}}\left( {r, {f_{\rm d}} + p{f\!_{p}}} \right) = \frac{{{{a}}_p^{\rm{H}}\left( {{f_{\rm d}}} \right){{{Z}}_{p_{-}1}}\left( {r, {f_{\rm d}}} \right)}}{M}$
如果未满足收敛条件或者未达到迭代次数
%第$k$次迭代($k \ge 2$)
$\begin{align}{{{Z}}_{p_{-}k}}\left( {r, {f_{\rm d}}} \right) =& {{Z}}\left( {r, {f_{\rm d}}} \right) \\& - \sum\limits_{i = - \left( {M - 1} \right)/2, i \ne p}^{\left( {M - 1} \right)/2} {{{{a}}_i}\left( {{f_{\rm d}}} \right)} \cdot {\hat Z_{{{{\rm rec}_{-}k - 1}}}}\left( {r, {f_{\rm d}} + p{f\!_{p}}} \right)\end{align}$
${\hat Z_{{{{\rm rec}_{-}k}}}}\left( {r, {f_{\rm d}} + p{f\!_{p}}} \right) = \frac{{{{a}}_p^{\rm{H}}\left( {{f_{\rm d}}} \right){{{Z}}_{p_{-}k}}\left( {r, {f_{\rm d}}} \right)}}{M}$
End
End
End表 3 不同重建方法的性能对比
算法类别 PSLR(dB) 方位向分辨率(m) SNR(dB) SANR(dB) 矩阵求逆法 13.99 1.66 39.46 27.08 最大信号法 13.99 1.66 40.33 12.97 Relax法 13.82 1.66 50.56 21.22 -
房超, 刘艳阳, 李真芳, 等. 方位多通道HRWS SAR多普勒中心稳健估计算法[J]. 西安电子科技大学学报, 2018, 45(1): 30–35. doi: 10.3969/j.issn.1001-2400.2018.01.006FANG Chao, LIU Yanyang, LI Zhenfang, et al. Robust doppler centroid estimation method for multichannel HRWS SAR[J]. Journal of Xidian University, 2018, 45(1): 30–35. doi: 10.3969/j.issn.1001-2400.2018.01.006 赵耀, 邓云凯, 王宇, 等. 原始数据压缩对方位向多通道SAR系统影响研究[J]. 雷达学报, 2017, 6(4): 397–407. doi: 10.12000/JR17030ZHAO Yao, DENG Yunkai, WANG Yu, et al. Study of effect of raw data compression on azimuth multi-channel SAR system[J]. Journal of Radars, 2017, 6(4): 397–407. doi: 10.12000/JR17030 王志斌, 刘艳阳, 李真芳, 等. 基于多普勒谱优化的HRWS SAR系统通道相位偏差估计算法[J]. 电子与信息学报, 2016, 38(12): 3026–3033. doi: 10.11999/JEIT161038WANG Zhibin, LIU Yanyang, LI Zhenfang, et al. Phase bias estimation algorithm for HRWS SAR system in azimuth based on doppler spectrum optimization[J]. Journal of Electronics &Information Technology, 2016, 38(12): 3026–3033. doi: 10.11999/JEIT161038 赵庆超, 张毅, 王宇, 等. 基于多帧超分辨率的方位向多通道星载SAR非均匀采样信号重建方法[J]. 雷达学报, 2017, 6(4): 408–419. doi: 10.12000/JR17035ZHAO Qingchao, ZHANG Yi, WANG Yu, et al. Signal reconstruction approach for multichannel SAR in azimuth based on multiframe super resolution[J]. Journal of Radars, 2017, 6(4): 408–419. doi: 10.12000/JR17035 田立俊. 高分宽幅SAR动目标成像方法研究[D]. [硕士论文], 电子科技大学, 2017: 6–16.TIAN Lijun. Study of Moving Target Imaging Method on High Resolution Wide Swath SAR[D]. [Master dissertation]. School of Electronic Engineering, 2017: 6–16. 林玉川, 张剑云, 武拥军, 等. 双基星载HRWS-SAR系统方位向信号重构的最小二乘算法[J]. 现代雷达, 2017, 39(10): 36–48. doi: 10.16592/j.cnki.1004-7859.2017.10.008LIN Yutian, ZHANG Jianyun, WU Yongjun, et al. Least square algorithm for azimuth reconstruction in bistatic spaceborne high resolution wide swath SAR[J]. Modern Radar, 2017, 39(10): 36–48. doi: 10.16592/j.cnki.1004-7859.2017.10.008 GEBERT N, KRIEGER G, and MOREIRA A. Multichannel azimuth processing in ScanSAR and TOPS mode operation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(7): 2994–3008. doi: 10.1109/TGRS.2010.2041356 LI Zhenfang, WANG Hongang, SU Tao, et al. Generation of wide-swath and high-resolution SAR images from multichannel small spaceborne SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(1): 82–86. doi: 10.1109/LGRS.2004.840610 SIKANERA I, GIERULL C, and CERUTTI-MAORI D. Optimum signal processing for multi-channel SAR: with application to high-resolution wide-swath imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6095–6109. doi: 10.1109/TGRS.2013.2294940 CERUTTI-MAORI D, SIKANETA I, KLARE J, et al. MIMO SAR processing for multichannel high-resolution wide-swath radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 5034–5055. doi: 10.1109/TGRS.2013.2286520 CERUTTI-MAORI D, SIKANETA I, and GIERULL C H. Optimum SAR/GMTI processing and its application to the radar satellite RADARSAT-2 for traffic monitoring[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10): 3868–3881. doi: 10.1109/TGRS.2012.2186637 CERUTTI-MAORI D and SIKANETA I. A generalization of DPCA processing for multi-channel SAR/GMTI radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 560–572. doi: 10.1109/TGRS.2012.2201260 王成浩, 廖桂生, 许京伟. FDA-SAR高分辨率宽测绘带成像距离解模糊方法[J]. 电子学报, 2017, 45(9): 2085–2091. doi: 10.3969/j.issn.0372-2112.2017.09.005WANG Chenhao, LIAO Guisheng, and XU Jingwei. Range ambiguity resolving method for high-resolution and wide-swath imaging with FDA-SAR[J]. Acta Electronica Sinica, 2017, 45(9): 2085–2091. doi: 10.3969/j.issn.0372-2112.2017.09.005 ZHANG Yongqiang. Super-resolution passive ISAR imaging via the RELAX algorithm[C]. Computational Intelligence and Design (ISCID), Hangzhou, China, 2016: 2473–3547. doi: 10.1109/ISCID.2016.2024.