高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

背景抑制直方图模型的连续自适应均值漂移跟踪算法

王旭东 王屹炜 闫贺

王旭东, 王屹炜, 闫贺. 背景抑制直方图模型的连续自适应均值漂移跟踪算法[J]. 电子与信息学报, 2019, 41(6): 1480-1487. doi: 10.11999/JEIT180588
引用本文: 王旭东, 王屹炜, 闫贺. 背景抑制直方图模型的连续自适应均值漂移跟踪算法[J]. 电子与信息学报, 2019, 41(6): 1480-1487. doi: 10.11999/JEIT180588
Xudong WANG, Yiwei WANG, He YAN. Continuously Adaptive Mean-shift Tracking Algorithm with Suppressed Background Histogram Model[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1480-1487. doi: 10.11999/JEIT180588
Citation: Xudong WANG, Yiwei WANG, He YAN. Continuously Adaptive Mean-shift Tracking Algorithm with Suppressed Background Histogram Model[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1480-1487. doi: 10.11999/JEIT180588

背景抑制直方图模型的连续自适应均值漂移跟踪算法

doi: 10.11999/JEIT180588
基金项目: 航空基金(20182007001, 2017052015)
详细信息
    作者简介:

    王旭东:男,1978年生,博士,副教授,研究方向为信号与信息处理

    王屹炜:男,1992年生,硕士生,研究方向为图像处理与目标跟踪

    闫贺:男,1985年生,博士,讲师,研究方向为广域运动目标监视

    通讯作者:

    王旭东 xudong@nuaa.edu.cn

  • 中图分类号: TN911.73

Continuously Adaptive Mean-shift Tracking Algorithm with Suppressed Background Histogram Model

Funds: Aviation fund (20182007001, 2017052015)
  • 摘要: 针对传统连续自适应均值漂移(CAMshift)跟踪算法在建立目标颜色模型阶段容易包含大量背景颜色信息从而使跟踪效果变差的问题,该文提出一种改进算法。利用混合高斯模型背景法(GMM)将原始图像分割成前景和背景的叠加,在原始图像和背景图像上运动物体所在区域分别建立色调分量直方图,利用背景图像的色调分量直方图计算原始图像中对应色调分量的权值,抑制原始图像中与背景颜色相同的色调,扩大前景与背景颜色的差异性。该方法通过对原始颜色模型中属于背景的色调进行抑制,扩大了目标颜色模型的显著性,提高了跟踪的准确性和稳定性,目标定位的最大中心误差小于20%,能够准确跟踪不发生丢失。
  • 图  1  色调分量直方图改进效果

    图  2  本文算法得到反向投影图改进效果

    图  3  跟踪目标模板

    图  4  传统CAMshift跟踪效果及反向投影图

    图  5  多特征融合的CAMshift跟踪结果与反向投影图

    图  6  本文算法跟踪结果与反向投影图

    图  7  传统CAMshift跟踪结果与反向投影图

    图  8  多特征融合的Camshift跟踪结果与反向投影图

    图  9  本文算法跟踪结果与反向投影图

    图  10  中心位置误差对比

  • 黄凯奇, 陈晓棠, 康运锋, 等. 智能视频监控技术综述[J]. 计算机学报, 2015, 38(6): 1093–1118. doi: 10.11897/SP.J.1016.2015.01093

    HUANG Kaiqi, CHEN Xiaotang, KANG Yunfeng, et al. Intelligent visual surveillance: A review[J]. Chinese Journal of Computers, 2015, 38(6): 1093–1118. doi: 10.11897/SP.J.1016.2015.01093
    TIAN Yumin, ZHENG Haihong, CHEN Qichao, et al. Surveillance video synopsis generation method via keeping important relationship among objects[J]. IET Computer Vision, 2016, 10(8): 868–872. doi: 10.1049/iet-cvi.2016.0128
    BELYAEV E, VINEL A, SURAK A, et al. Robust vehicle-to-infrastructure video transmission for road surveillance applications[J]. IEEE Transactions on Vehicular Technology, 2015, 64(7): 2991–3003. doi: 10.1109/TVT.2014.2354376
    GARCíA-MARTíN á and MARTíNEZ J M. People detection in surveillance: Classification and evaluation[J]. IET Computer Vision, 2015, 9(5): 779–788. doi: 10.1049/iet-cvi.2014.0148
    李刚, 何小海, 张生军, 等. 改进的基于GMM的运动目标检测方法[J]. 计算机应用研究, 2011, 28(12): 4738–4741. doi: 10.3969/j.issn.1001-3695.2011.12.090

    LI Gang, HE Xiaohai, ZHANG Shengjun, et al. Improved moving objects detection method based on GMM[J]. Application Research of Computers, 2011, 28(12): 4738–4741. doi: 10.3969/j.issn.1001-3695.2011.12.090
    修春波, 魏世安. 显著性直方图模型的Camshift跟踪方法[J]. 光学精密工程, 2015, 23(6): 1749–1757. doi: 10.3788/OPE.20152306.1749

    XIU Chunbo and WEI Shian. Camshift tracking with saliency histogram[J]. Optics and Precision Engineering, 2015, 23(6): 1749–1757. doi: 10.3788/OPE.20152306.1749
    ZHOU Hailing, KONG Hui, WEI Lei, et al. Efficient road detection and tracking for unmanned aerial vehicle[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(1): 297–309. doi: 10.1109/TITS.2014.2331353
    LAN Jinhui, JIANG Yaoliang, FAN Guoliang, et al. Real-time automatic obstacle detection method for traffic surveillance in urban traffic[J]. Journal of Signal Processing Systems, 2016, 82(3): 357–371. doi: 10.1007/s11265-015-1006-4
    刘嘉敏, 梁莹, 孙洪兴, 等. 融合检测和跟踪的实时人脸跟踪[J]. 中国图象图形学报, 2015, 20(11): 1473–1481. doi: 10.11834/jig.20151106

    LIU Jiamin, LIANG Ying, SUN Hongxing, et al. Real-time face tracking based on detecting and tracking[J]. Journal of Image and Graphics, 2015, 20(11): 1473–1481. doi: 10.11834/jig.20151106
    HOCINE L, CAO Wei, DING Yong, et al. Adaptive learning rate GMM for moving object detection in outdoor surveillance for sudden illumination changes[J]. Journal of Beijing Institute of Technology, 2016, 25(1): 145–151. doi: 10.15918/j.jbit1004-0579.201625.0121
    KIM Y, HAN W, LEE Y H, et al. Object tracking and recognition based on reliability assessment of learning in mobile environments[J]. Wireless Personal Communications, 2017, 94(2): 267–282. doi: 10.1007/s11277-016-3292-y
    陈杏源, 郑烈心, 裴海龙. 基于Camshift和SURF的目标跟踪系统[J]. 计算机工程与设计, 2016, 37(4): 903–906. doi: 10.16208/j.issn1000-7024.2016.04.013

    CHEN Xingyuan, ZHENG Liexin, and PEI Hailong. Object tracking system based on Camshift and SURF[J]. Computer Engineering and Design, 2016, 37(4): 903–906. doi: 10.16208/j.issn1000-7024.2016.04.013
    LI Fuliang, ZHANG Ronghui, YOU Feng. Fast pedestrian detection and dynamic tracking for intelligent vehicles within V2V cooperative environment[J]. IET Image Processing, 2017, 11(10): 833–840. doi: 10.1049/iet-ipr.2016.0931
    王玲玲, 裴东, 王全州. 一种改进的Camshift视频目标跟踪算法[J]. 激光与红外, 2015, 45(10): 1266–1271. doi: 10.3969/j.issn.1001-5078.2015.10.024

    WANG Lingling, PEI Dong, and WANG Quanzhou. Video target tracking algorithm based on improved Camshift[J]. Laser &Infrared, 2015, 45(10): 1266–1271. doi: 10.3969/j.issn.1001-5078.2015.10.024
    MORSHIDI M and TJAHJADI T. Gravity optimised particle filter for hand tracking[J]. Pattern Recognition, 2014, 47(1): 194–207. doi: 10.1016/j.patcog.2013.06.032
  • 加载中
图(10)
计量
  • 文章访问数:  2155
  • HTML全文浏览量:  782
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-13
  • 修回日期:  2019-03-08
  • 网络出版日期:  2019-03-27
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回