高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于节点间资源承载度的链路预测方法

王凯 刘树新 陈鸿昶 李星

王凯, 刘树新, 陈鸿昶, 李星. 一种基于节点间资源承载度的链路预测方法[J]. 电子与信息学报, 2019, 41(5): 1225-1234. doi: 10.11999/JEIT180553
引用本文: 王凯, 刘树新, 陈鸿昶, 李星. 一种基于节点间资源承载度的链路预测方法[J]. 电子与信息学报, 2019, 41(5): 1225-1234. doi: 10.11999/JEIT180553
Kai WANG, Shuxin LIU, Hongchang CHEN, Xing LI. A New Link Prediction Method for Complex Networks Based on Resources Carrying Capacity Between Nodes[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1225-1234. doi: 10.11999/JEIT180553
Citation: Kai WANG, Shuxin LIU, Hongchang CHEN, Xing LI. A New Link Prediction Method for Complex Networks Based on Resources Carrying Capacity Between Nodes[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1225-1234. doi: 10.11999/JEIT180553

一种基于节点间资源承载度的链路预测方法

doi: 10.11999/JEIT180553
基金项目: 国家自然科学基金(61521003, 61803384)
详细信息
    作者简介:

    王凯:男,1980年生,副研究员,博士生,研究方向为链路预测、社会网络分析

    刘树新:男,1987年生,助理研究员,博士,研究方向为复杂网络演化、链路预测、通信网络安全

    陈鸿昶:男,1964年生,教授,博士生导师,研究方向为电信网安全、社团发现

    李星:男,1987年生,助理研究员,博士生,研究方向为社会网络分析

    通讯作者:

    刘树新 liushuxin11@126.com; liushuxin11@gmail.com

  • 中图分类号: N94; TP393

A New Link Prediction Method for Complex Networks Based on Resources Carrying Capacity Between Nodes

Funds: The National Natural Science Foundation of China (61521003, 61803384)
  • 摘要: 链路预测旨在发现网络的未知、缺失连接,具有重要的实际应用价值。基于网络结构相似性的链路预测方法具有简单且有效的特点,受到各领域学者的普遍关注。然而,许多现有方法在计算节点间存在连接可能性时,忽视了节点间资源承载能力的影响。鉴于此,该文提出一种基于节点间资源承载度的链路预测方法。该方法首先通过分析节点间资源传输过程,进而对节点间资源承载能力进行量化,提出资源承载度。然后,基于资源承载度对节点间连接可能性的影响进行分析,并提出相应的链路预测方法。9个真实网络的实验结果表明,相比其他链路预测方法,该方法在3个衡量标准下均具有较高的预测精度。
  • 图  1  网络中任意两点之间资源承载示意图

    图  2  网络节点间资源传输示意图

    图  3  不同拓扑结构下节点间资源承载度对比

    图  4  不同节点对节点间资源承载度的影响

    图  5  强度参数对AUC结果影响曲线图

    图  6  强度参数对Pre结果影响曲线图

    图  7  9个网络中ROC曲线对比结果

    表  1  网络数据特征参数

    NetworkAIDSFWFBFWFWCEEmailPBHamsterFigeysUC
    |V|146128692971671222185822391899
    |E|1802075880214857841671712534643213838
    C0.0520.3350.5520.3080.5410.3610.09040.040.109
    <k>2.4732.4225.5114.4669.2627.3613.495.7614.57
    <d>3.421.781.642.461.872.743.393.983.06
    r–0.725–0.112–0.298–0.225–0.295–0.221–0.085–0.331–0.188
    下载: 导出CSV

    表  2  AUC结果对比

    NetworkAIDSFWFBFWEWCEEmailPBHamsterFigeysUC
    CN0.5880.6050.6860.8530.9200.9230.8170.5630.782
    RA0.6010.6090.7010.8730.9280.9270.8220.5680.786
    AA0.6020.6080.6950.8700.9220.9260.8210.5670.786
    CAR0.5890.6200.6890.8530.9190.9210.8170.5640.780
    LP-0.0010.8310.6220.7070.8710.9220.9350.9360.8890.891
    LP-0.010.8310.6700.7300.8710.9210.9370.9420.9030.902
    Katz-0.0010.8470.6200.7060.8700.9210.9340.9350.8860.891
    Katz-0.010.8480.6750.7370.8690.9190.9320.9390.9000.901
    ACT0.9510.7220.7840.7550.9000.8910.8710.9180.895
    Cos+0.5840.6500.5140.8620.9060.9250.9610.8430.871
    QN-18.50.9360.9180.9270.8960.9350.9460.9770.9450.928
    QN-max0.9620.9190.9280.8960.9360.9470.9770.9520.928
    下载: 导出CSV

    表  3  Pre结果对比

    NetworkAIDSFWFBFWEWCEEmailPBHamsterFigeysUC
    CN0.0140.0860.1610.1310.7080.4170.0150.0110.022
    RA0.0260.0880.1700.1290.7270.2470.0070.0140.020
    AA0.0260.0900.1640.1380.7200.3800.0100.0120.022
    CAR0.0140.0880.1500.1310.7030.4780.0300.0260.052
    LP-0.0010.0510.0940.1710.1370.7090.4210.0170.0110.025
    LP-0.010.0510.1230.1980.1360.7010.4550.0520.0120.034
    Katz-0.0010.0530.0930.1710.1370.7090.4220.0170.0110.025
    Katz-0.010.0530.1340.2020.1360.6960.4540.0710.0120.037
    ACT0.0000.0000.1260.0000.0000.0000.0000.0000.000
    Cos+0.0000.0390.0000.0810.6200.3330.0170.0080.011
    QN-2.50.0750.3970.4150.1560.7340.4600.2510.1920.114
    QN-max0.0780.6510.5470.2510.9270.5800.9060.2100.165
    下载: 导出CSV
  • SHANMUKHAPPA T, HO I W H, and TSE C K. Spatial analysis of bus transport networks using network theory[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 502: 295–314. doi: 10.1016/j.physa.2018.02.111
    CUI Ying, CAI Meng, DAI Yang, et al. A hybrid network-based method for the detection of disease-related genes[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 492: 389–394. doi: 10.1016/j.physa.2017.10.026
    VINCENOT C E. How new concepts become universal scientific approaches: insights from citation network analysis of agent-based complex systems science[J]. Proceedings of the Royal Society B: Biological Sciences, 2018, 285(1874): 20172360. doi: 10.1098/rspb.2017.2360
    CHEN Zhenhao, WU Jiajing, XIA Yongxiang, et al. Robustness of interdependent power grids and communication networks: A complex network perspective[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(1): 115–119. doi: 10.1109/TCSII.2017.2705758
    KIM J and HASTAK M. Social network analysis: characteristics of online social networks after a disaster[J]. International Journal of Information Management, 2018, 38(1): 86–96. doi: 10.1016/j.ijinfomgt.2017.08.003
    VON MERING C, JENSEN L J, SNEL B, et al. STRING: known and predicted protein-protein associations, integrated and transferred across organisms[J]. Nucleic Acids Research, 2005, 33(1): D433–D437. doi: 10.1093/nar/gki005
    SCELLATO S, NOULAS A, and MASCOLO C. Exploiting place features in link prediction on location-based social networks[C]. Proceedings of the 17th ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Diego, California, USA, 2011: 1046–1054. doi: 10.1145/2020408.2020575.
    HOLLAND P W, LASKEY K B, and LEINHARDT S. Stochastic blockmodels: first steps[J]. Social Networks, 1983, 5(2): 109–137. doi: 10.1016/0378-8733(83)90021-7
    SANZ-CRUZADO J, PEPA S M, and CASTELLS P. Structural novelty and diversity in link prediction[C]. Companion of the the Web Conference, 2018, Lyon, France, 2018: 1347–1351.
    LORRAIN F and WHITE H C. Structural equivalence of individuals in social networks[J]. The Journal of Mathematical Sociology, 1971, 1(1): 49–80. doi: 10.1080/0022250X.1971.9989788
    ZHOU Tao, LÜ Linyuan, and ZHANG Yicheng. Predicting missing links via local information[J]. The European Physical Journal B, 2009, 71(4): 623–630. doi: 10.1140/epjb/e2009-00335-8
    ADAMIC L A and ADAR E. Friends and neighbors on the web[J]. Social Networks, 2003, 25(3): 211–230. doi: 10.1016/S0378-8733(03)00009-1
    CANNISTRACI C V, ALANIS-LOBATO G, and RAVASI T. From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks[J]. Scientific Reports, 2013(3): 1613. doi: 10.1038/srep01613
    LIU Shuxin, JI Xinsheng, LIU Caixia, et al. Extended resource allocation index for link prediction of complex network[J]. Physica A: Statistical Mechanics and Its Applications, 2017, 479: 174–183. doi: 10.1016/j.physa.2017.02.078
    KATZ L. A new status index derived from sociometric analysis[J]. Psychometrika, 1953, 18(1): 39–43. doi: 10.1007/BF02289026
    KLEIN D J and RANDIĆ M. Resistance distance[J]. Journal of Mathematical Chemistry, 1993, 12(1): 81–95. doi: 10.1007/BF01164627
    FOUSS F, PIROTTE A, RENDERS J M, et al. Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(3): 355–369. doi: 10.1109/tkde.2007.46
    LÜ Linyuan, JIN Cihang, and ZHOU Tao. Similarity index based on local paths for link prediction of complex networks[J]. Physical Review E, 2009, 80(4): 046122. doi: 10.1103/PhysRevE.80.046122
    YANG Yujie, ZHANG Jianhua, ZHU Xuzhen, et al. Link prediction via significant influence[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 492: 1523–1530. doi: 10.1016/j.physa.2017.11.078
    刘树新, 季新生, 刘彩霞, 等. 一种信息传播促进网络增长的网络演化模型[J]. 物理学报, 2014, 63(15): 158902. doi: 10.7498/aps.63.158902

    LIU Shuxin, JI Xinsheng, LIU Caixia, et al. A complex network evolution model for network growth promoted by information transmission[J]. Acta Physica Sinica, 2014, 63(15): 158902. doi: 10.7498/aps.63.158902
    WANG Xingyuan, ZHOU Wenjie, LI Rui, et al. Improving robustness of interdependent networks by a new coupling strategy[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 492: 1075–1080. doi: 10.1016/j.physa.2017.11.037
    WANG Xingyuan, CAO Jianye, LI Rui, et al. A preferential attachment strategy for connectivity link addition strategy in improving the robustness of interdependent networks[J]. Physica A: Statistical Mechanics and Its Applications, 2017, 483: 412–422. doi: 10.1016/j.physa.2017.04.128
    WANG Xingyuan, CAO Jianye, and QIN Xiaomeng. Study of robustness in functionally identical coupled networks against cascading failures[J]. PLoS One, 2016, 11(8): e0160545. doi: 10.1371/journal.pone.0160545
    DEWHURST D R, DANFORTH C M, and DODDS P S. Continuum rich-get-richer processes: mean field analysis with an application to firm size[J]. Physical Review E, 2018, 97(6): 062317. doi: 10.1103/PhysRevE.97.062317
    ZENG Guoping and ZENG E. On the three-way equivalence of AUC in credit scoring with tied scores[J]. Communications in Statistics-Theory and Methods, 2017, 46(17): 1–16. doi: 10.1080/03610926.2018.1435814
    WU Zhihao, LIN Youfang, ZHAO Yiji, et al. Improving local clustering based top-L link prediction methods via asymmetric link clustering information[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 492: 1859–1874. doi: 10.1016/j.physa.2017.11.103
    ZENG Xiangxiang, LIU Li, LÜ Linyuan, et al. Prediction of potential disease-associated microRNAs using structural perturbation method[J]. Bioinformatics, 2018, 34(14): 2425–2432. doi: 10.1093/bioinformatics/bty112
    GOPAL S. The evolving social geography of blogs[M]. MILLER H J. Societies and Cities in the Age of Instant Access. Dordrecht, Springer, 2007: 275–293. doi: 10.1007/1-4020-5427-0_18.
    MICHALSKI R, PALUS S, and KAZIENKO P. Matching organizational structure and social network extracted from email communication[C]. Proceedings of the 14th International Conference on Business Information Systems, Poznań, Poland, 2011.
    ULANOWICZ R E and DEANGELIS D L. Network analysis of trophic dynamics in south Florida ecosystems[J]. US Geological Survey Program on the South Florida Ecosystem, 2005, 114: 45–47. (未找到本条文献信息, 请核对
    WATTS D J and STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684): 440–442. doi: 10.1038/30918
    MICHALSKI R, PALUS S, and KAZIENKO P. Matching organizational structure and social network extracted from email communication[C]. Proceedings of the 14th International Conference on Business Information Systems, Poznań, Poland, 2011: 197–206. doi: 10.1007/978-3-642-21863-7_17.
    ADAMIC L A and GLANCE N. The political blogosphere and the 2004 U.S. election: divided they blog[C]. Proceedings of the 3rd International Workshop on Link Discovery, Chicago, USA, 2005: 36–43. doi: 10.1145/1134271.1134277.
    LÜ Linyuan, PAN Liming, ZHOU Tao, et al. Toward link predictability of complex networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(8): 2325–2330. doi: 10.1073/pnas.1424644112
    EWING R M, CHU P, ELISMA F, et al. Large-scale mapping of human protein-protein interactions by mass spectrometry[J]. Molecular Systems Biology, 2007, 3: 89. doi: 10.1038/msb4100134
    OPSAHL T and PANZARASA P. Clustering in weighted networks[J]. Social Networks, 2009, 31(2): 155–163. doi: 10.1016/j.socnet.2009.02.002
    刘树新, 季新生, 刘彩霞, 等. 局部拓扑信息耦合促进网络演化[J]. 电子与信息学报, 2016, 38(9): 2180–2187. doi: 10.11999/JEIT151338

    LIU Shuxin, JI Xinsheng, LIU Caixia, et al. Information coupling of local topology promoting the network evolution[J]. Journal of Electronics &Information Technology, 2016, 38(9): 2180–2187. doi: 10.11999/JEIT151338
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  1089
  • HTML全文浏览量:  504
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-05
  • 修回日期:  2019-01-16
  • 网络出版日期:  2019-01-30
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回