高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种低复杂度的稀疏FIR陷波滤波器的设计方法

徐微 李安宇 石博雅

徐微, 李安宇, 石博雅. 一种低复杂度的稀疏FIR陷波滤波器的设计方法[J]. 电子与信息学报, 2019, 41(4): 939-944. doi: 10.11999/JEIT180548
引用本文: 徐微, 李安宇, 石博雅. 一种低复杂度的稀疏FIR陷波滤波器的设计方法[J]. 电子与信息学报, 2019, 41(4): 939-944. doi: 10.11999/JEIT180548
Wei XU, Anyu LI, Boya SHI. A Novel Design Algorithm for Low Complexity Sparse FIR Notch Filters[J]. Journal of Electronics & Information Technology, 2019, 41(4): 939-944. doi: 10.11999/JEIT180548
Citation: Wei XU, Anyu LI, Boya SHI. A Novel Design Algorithm for Low Complexity Sparse FIR Notch Filters[J]. Journal of Electronics & Information Technology, 2019, 41(4): 939-944. doi: 10.11999/JEIT180548

一种低复杂度的稀疏FIR陷波滤波器的设计方法

doi: 10.11999/JEIT180548
基金项目: 国家自然科学基金(61501324)
详细信息
    作者简介:

    徐微:女,1983年生,副教授,研究方向为滤波器设计与应用、超宽带和无线高速通信

    李安宇:男,1993年生,硕士生,研究方向为低功耗的数字滤波器设计

    石博雅:女,1981年生,讲师,研究方向为现代通信网络、无线高速通信

    通讯作者:

    徐微 tjpulay@163.com

  • 中图分类号: TN713

A Novel Design Algorithm for Low Complexity Sparse FIR Notch Filters

Funds: The National Natural Science Foundation of China (61501324)
  • 摘要:

    FIR陷波滤波器具有线性相位、精度高、稳定性好等诸多优势,然而当陷波性能要求较高时,通常需要较高的阶数,导致FIR陷波滤波器硬件实现复杂度大大提高。该文基于稀疏FIR滤波器设计算法和共同子式消除的思想,提出一种低复杂度的FIR陷波滤波器设计方法。该方法首先采用稀疏滤波器设计算法得到满足频域性能设计要求的FIR陷波原始滤波器系数,然后对其进行CSD编码,并分析CSD编码量化系数集中所有的2项子式和孤子的灵敏度,最后根据灵敏度的大小依次选择合理的2项子式或孤子直接合成滤波器系数集。仿真结果表明,新算法设计实现的FIR陷波滤波器比已有的低复杂度设计方法最多可减少51%的加法器,有效地降低了硬件实现复杂度,大大节省了硬件资源。

  • 图  1  2种方法实现系数${{h}_q}(1) = 10100\bar 10\bar 10101$

    图  2  实例1中($B = 16$)由本文算法得到的陷波滤波器的频率响应图

    图  3  实例2中($B = 16$)由本文算法得到的陷波滤波器的频率响应图

    表  1  实例1:两种算法分别实现FIR陷波滤波器的有关参数

    量化字长算法滤波器阶数非零系数个数#NZ加法器个数
    14文献[15]160161183111
    本文算法102679365
    16文献[15]160161195127
    本文算法102678962
    18文献[15]160161202132
    本文算法102679464
    下载: 导出CSV

    表  2  实例2:两种算法分别实现的FIR陷波滤波器的有关参数

    量化字长算法滤波器阶数非零系数个数#NZ加法器个数
    14文献[15]60615439
    本文算法72333625
    16文献[15]60615440
    本文算法72333825
    18文献[15]60615843
    本文算法72334028
    下载: 导出CSV
  • MEIDANI M and MASHOUFI B. Introducing new algorithms for realising an FIR filter with less hardware in order to eliminate power line interference from the ECG signal[J]. IET Signal Processing, 2016, 10(7): 709–716 doi: 10.1049/iet-spr.2015.0552
    SZADKOWSKI Z and GLAS D. The least mean squares adaptive FIR filter for narrow-band RFI suppression in radio detection of cosmic rays[J]. IEEE Transactions on Nuclear Science, 2017, 64(6): 1304–1315 doi: 10.1109/TNS.2017.2703617
    MEHRNIA A and WILLSON A N. A lower bound for the hardware complexity of FIR filters[J]. IEEE Circuits and Systems Magazine, 2018, 18(1): 10–28 doi: 10.1109/MCAS.2017.2785422
    GU Chao, ZHAO Jiaxiang, XU Wei, et al. Design of linear-phase notch filters based on the OMP scheme and the chebyshev window[J]. IEEE Transactions on Circuits and Systems-II: Express Briefs, 2012, 59(9): 592–596 doi: 10.1109/TCSII.2012.2206931
    XU Wei, ZHAO Jiaxiang, and GU Chao. Design of linear-phase FIR multiple-notch filters via an iterative reweighted OMP scheme[J]. IEEE Transactions on Circuits and Systems-II: Express Briefs, 2014, 61(10): 813–817 doi: 10.1109/TCSII.2014.2345299
    JIANG Aimin, KWAN H K, ZHU Yanping, et al. Design of sparse FIR filters with joint optimization of sparsity and filter order[J]. IEEE Transactions on Circuits and Systems-I: Regular Papers, 2015, 62(1): 195–204 doi: 10.1109/TCSI.2014.2354771
    JIANG Aimin, KWAN H K, and ZHU Yanping. Peak-error-constrained sparse FIR filter design using iterative L1 optimization[J]. IEEE Transactions on Signal Processing, 2012, 60(8): 4035–4044 doi: 10.1109/TSP.2012.2199316
    DAM H H, CANTONI A, TEO K L, et al. FIR variable digital filter with signed power-of-two coefficients[J]. IEEE Transactions on Circuits and Systems-I: Regular Papers, 2007, 54(6): 1348–1357 doi: 10.1109/TCSI.2007.897775
    CHOUDHARY S, MUKHERJEE P, CHAKRABORTY M, et al. A SPT treatment to the realization of the sign-LMS based adaptive filters[J]. IEEE Transactions on Circuits and Systems-I: Regular Papers, 2012, 59(9): 2025–2033 doi: 10.1109/TCSI.2012.2185300
    YE Jinghao, SHI Youhua, TOGAWA N, et al. A low cost and high speed CSD-based symmetric transpose block FIR implementation[C]. IEEE 12th International Conference on ASIC, Guiyang, China, 2017: 311–314.
    FENG Feng, CHEN Jiajia, and CHANG C H. Hypergraph based minimum arborescence algorithm for the optimization and reoptimization of multiple constant multiplications[J]. IEEE Transactions on Circuits and Systems-I: Regular Papers, 2016, 63(2): 233–244 doi: 10.1109/TCSI.2015.2512742
    DING Jiatao, CHEN Jiajia, and CHANG C H. A new paradigm of common subexpression elimination by unification of addition and subtraction[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35(10): 1605–1617 doi: 10.1109/TCAD.2016.2527700
    LIU Hui and JIANG Aimin. Efficient design of FIR filters using common subexpression elimination[C]. International Conference on Wireless Communications & Signal Processing, Yangzhou, China, 2016: 1–5.
    TRIMALE M B and CHILVERI. A review: FIR filter implementation[C]. 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology, Bangalore, India, 2017: 137–141.
    CHEN Jiajia, TAN Jinghong, CHANG C H, et al. A new cost-aware sensitivity-driven algorithm for the design of FIR filters[J]. IEEE Transactions on Circuits and Systems-I: Regular Papers, 2017, 64(6): 1588–1598 doi: 10.1109/TCSI.2016.2557840
    MARTINEZ-PEIRO M, BOEMO E I, and WANHAMMAR L. Design of high-speed multiplierless filters using a nonrecursive signed common subexpression algorithm[J]. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, 2002, 49(3): 196–203 doi: 10.1109/TCSII.2002.1013866
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  1791
  • HTML全文浏览量:  592
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-04
  • 修回日期:  2018-12-25
  • 网络出版日期:  2019-01-02
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回