高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混沌灰狼优化算法训练多层感知器

晏福 徐建中 李奉书

晏福, 徐建中, 李奉书. 混沌灰狼优化算法训练多层感知器[J]. 电子与信息学报, 2019, 41(4): 872-879. doi: 10.11999/JEIT180519
引用本文: 晏福, 徐建中, 李奉书. 混沌灰狼优化算法训练多层感知器[J]. 电子与信息学报, 2019, 41(4): 872-879. doi: 10.11999/JEIT180519
Fu YAN, Jianzhong XU, Fengshu LI. Training Multi-layer Perceptrons Using Chaos Grey Wolf Optimizer[J]. Journal of Electronics & Information Technology, 2019, 41(4): 872-879. doi: 10.11999/JEIT180519
Citation: Fu YAN, Jianzhong XU, Fengshu LI. Training Multi-layer Perceptrons Using Chaos Grey Wolf Optimizer[J]. Journal of Electronics & Information Technology, 2019, 41(4): 872-879. doi: 10.11999/JEIT180519

混沌灰狼优化算法训练多层感知器

doi: 10.11999/JEIT180519
基金项目: 国家社会科学基金(16BJY078),黑龙江省经济社会发展重点研究课题(KY10900170004),黑龙江省哲学社会科学研究规划(17JYH49)
详细信息
    作者简介:

    晏福:男,1989年生,博士生,研究方向为智能优化算法、神经网络和数据挖掘

    徐建中:男,1959年生,教授,博士生导师,研究方向为管理科学前沿研究

    李奉书:男,1989年生,博士生,研究方向为管理科学前沿研究

    通讯作者:

    徐建中 xujianzhongxjz@163.com

  • 中图分类号: TP301.6

Training Multi-layer Perceptrons Using Chaos Grey Wolf Optimizer

Funds: The National Social Science Foundation of China (16BJY078), The Key Program of Economic and Social of Heilongjiang Province (KY10900170004), The Philosophy and Social Science Research Planning Program of Heilongjiang Province (17JYH49)
  • 摘要:

    灰狼优化算法(GWO)是一种新的基于灰狼捕食行为的元启发式算法,被证明是一种具有高水平的探索和开发能力的算法。但是存在开发和探索不平衡的问题,以至于其优化性能并不理想。该文将混沌理论引入GWO中,用于平衡GWO的探索和开发,提出一种改进的混沌灰狼优化算法(CGWO),并应用于多层感知器(MLPs)的训练。首先,基于Cubic混沌理论对GWO的位置更新公式进行改进,以增加个体的多样性,增大跳出局部最优的概率和对解空间进行深入的搜索;其次,设计一种非线性收敛因子,用于协调和平衡CGWO算法在不同迭代进化时期的探索和开发能力;最后,将CGWO算法作为MLPs的训练器,用于对3个复杂分类问题进行分类实验。结果表明:CGWO在分类准确率,避免陷入局部最优,全局收敛速度和鲁棒性方面相较于其他对比算法均具有较好的性能。

  • 图  1  基于CGWO的多层感知器

    图  2  5种算法对3 bit XOR问题10次独立运行的收敛曲线和分类准确率

    图  3  5种算法对气球分类问题10次独立运行的收敛曲线和分类准确率

    图  4  5种算法对虹膜分类问题10次独立运行的收敛曲线和分类准确率

    表  1  3位奇偶校验问题(3 bit XOR)

    输入输出
    0 0 00
    0 0 11
    0 1 01
    0 1 10
    1 0 01
    1 0 10
    1 1 00
    1 1 11
    下载: 导出CSV

    表  2  5种算法对3 bit XOR问题10次独立运行结果的比较

    算法平均值中值标准差最好值
    PSO-MLP1.48e–041.65e–052.40e–047.67e–09
    GSA-MLP2.35e–012.38e–011.17e–022.10e–01
    PSOGSA-MLP1.27e–029.29e–062.57e–021.64e–09
    GWO-MLP7.00e–036.07e–031.89e–022.90e–05
    CGWO-MLP6.01e–061.21e–081.33e–052.69e–09
    下载: 导出CSV

    表  3  5种算法对气球分类问题10次独立运行结果的比较

    算法平均值中值标准差最好值
    PSO-MLP0000
    GSA-MLP5.90e–034.10e–036.00e–034.69e–04
    PSOGSA-MLP9.85e–329.73e–402.94e–313.81e–61
    GWO-MLP1.12e–183.56e–202.38e–182.49e–26
    CGWO-MLP2.35e–152.07e–185.03e–151.00e–18
    下载: 导出CSV

    表  4  5种算法对虹膜分类问题10次独立运行结果的比较

    算法平均值中值标准差最好值
    PSO-MLP2.70e–022.47e–021.76e–026.20e–03
    GSA-MLP1.83e–011.89e–012.30e–021.48e–01
    PSOGSA-MLP4.91e–021.84e–021.01e–011.16e–02
    GWO-MLP2.27e–022.19e–022.70e–031.71e–02
    CGWO-MLP1.90e–021.82e–024.10e–031.39e–02
    下载: 导出CSV
  • MCCULLOCH W S and PITTS W. A logical calculus of the ideas immanent in nervous activity[J]. The Bulletin of Mathematical Biophysics, 1943, 5(4): 115–133 doi: 10.1007/BF02478259
    BEBIS G and GEORGIOPOULOS M. Feed-forward neural networks[J]. IEEE Potentials, 1994, 13(4): 27–31 doi: 10.1109/45.329294
    KOHONEN T. The self-organizing map[J]. Proceedings of the IEEE, 1990, 78(9): 1464–1480 doi: 10.1109/5.58325
    JAFRASTEH B and FATHIANPOUR N. A hybrid simultaneous perturbation artificial bee colony and back-propagation algorithm for training a local linear radial basis neural network on ore grade estimation[J]. Neurocomputing, 2017, 235: 217–227 doi: 10.1016/j.neucom.2017.01.016
    CHICEA D. Using neural networks for dynamic light scattering time series processing[J]. Measurement Science and Technology, 2017, 28(5): 055206 doi: 10.1088/1361-6501/aa61b4
    MORRO A, CANALS V, OLIVER A, et al. A stochastic spiking neural network for virtual screening[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(4): 1371–1375 doi: 10.1109/TNNLS.2017.2657601
    MIRJALILI S. How effective is the Grey Wolf Optimizer in training multi-layer perceptrons[J]. Applied Intelligence, 2015, 43(1): 150–161 doi: 10.1007/s10489-014-0645-7
    ISA N A M and MAMAT W M F W. Clustered-hybrid multilayer perceptron network for pattern recognition application[J]. Applied Soft Computing, 2011, 11(1): 1457–1466 doi: 10.1016/j.asoc.2010.04.017
    韦岗, 李华, 徐秉铮. 关于前馈多层神经网络多维函数逼近能力的一个定理[J]. 电子科学学刊, 1997, 20(4): 433–438

    WEI Gang, LI Hua, and XU Bingzheng. A novel theorem on the multi-dimensional function approximation ability of feed forward multi-layer neural networks[J]. Journal of Electronics, 1997, 20(4): 433–438
    LIBANO F, RECH P, TAMBARA L, et al. On the reliability of linear regression and pattern recognition feedforward artificial neural networks in FPGAs[J]. IEEE Transactions on Nuclear Science, 2018, 65(1): 288–295 doi: 10.1109/TNS.2017.2784367
    LI Feng, ZURADA J M, LIU Yan, et al. Input layer regularization of multilayer feedforward neural networks[J]. IEEE Access, 2017, 5: 10979–10985 doi: 10.1109/ACCESS.2017.2713389
    MIRJALILI S, MOHD H S, and MORADIAN S H. Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm[J]. Applied Mathematics and Computation, 2012, 218(22): 11125–11137 doi: 10.1016/j.amc.2012.04.069
    张长利, 房俊龙, 潘伟. 用遗传算法训练的多层前馈神经网络对番茄成熟度进行自动检测的研究[J]. 农业工程学报, 2001, 17(3): 153–156 doi: 10.3321/j.issn:1002-6819.2001.03.037

    ZHANG Changli, FANG Junlong, and PANG Wei. Automated identification of tomato maturation using multilayer feedforward neural network with genetic algorithms (GA)[J]. Transactions of the Chinese Society of Agricultural Engineering, 2001, 17(3): 153–156 doi: 10.3321/j.issn:1002-6819.2001.03.037
    ZHANG Ridong and TAO Jili. A nonlinear fuzzy neural network modeling approach using an improved genetic algorithm[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5882–5892 doi: 10.1109/TIE.2017.2777415
    海宇娇, 刘青昆. 基于差分进化的ELM加权集成分类[J]. 计算机工程与应用, 2017, 53(8): 57–60 doi: 10.3778/j.issn.1002-8331.1510-0051

    HAI Yujiao and LIU Qingkun. ELM weighting ensemble classification based on differential evolution[J]. Computer Engineering and Applications, 2017, 53(8): 57–60 doi: 10.3778/j.issn.1002-8331.1510-0051
    LEEMAA N, NEHEMIAHA H K, and KANNANB A. Neural network classifier optimization using differential evolution with global information and back propagation algorithm for clinical datasets[J]. Applied Soft Computing, 2016, 49: 834–844 doi: 10.1016/j.asoc.2016.08.001
    MICHALIS M and YANG Shengxiang. Training neural networks with ant colony optimization algorithms for pattern classification[J]. Soft Computing, 2015, 19(6): 1511–1522 doi: 10.1007/s00500-014-1334-5
    KRZYSZTOF S and CHRISTIAN B. An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training[J]. Neural Computing and Applications, 2007, 16(3): 235–247 doi: 10.1007/s00521-007-0084-z
    ROBERT C G, WANG Lingfeng, and MANSOOR A. Training neural networks using central force optimization and particle swarm optimization: Insights and comparisons[J]. Expert Systems with Applications, 2012, 39(1): 555–563 doi: 10.1016/j.eswa.2011.07.046
    ZHANG Jingru, ZHANG Jun, LOCK T M, et al. A hybrid particle swarm optimization–back-propagation algorithm for feedforward neural network training[J]. Applied Mathematics and Computation, 2007, 185(2): 1026–1037 doi: 10.1016/j.amc.2006.07.025
    CHEN Ke, ZHOU Fengyu, and LIU Aling. Chaotic dynamic weight particle swarm optimization for numerical function optimization[J]. Knowledge-Based Systems, 2018, 139: 23–40 doi: 10.1016/j.knosys.2017.10.011
    LONG Wen, JIAO Jianjun, LIANG Ximing, et al. An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization[J]. Engineering Applications of Artificial Intelligence, 2018, 68: 63–80 doi: 10.1016/j.engappai.2017.10.024
    MURO C, ESCOBEDO R, SPECTOR L, et al. Wolf-pack hunting strategies emerge from simple rules in computational simulations[J]. Behavioral Processes, 2011, 88(3): 192–197 doi: 10.1016/j.beproc.2011.09.006
    MIRJALILI S, MIRJALILI S M, and LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46–61 doi: 10.1016/j.advengsoft.2013.12.007
    UDWADIA F E and GUTTALU R S. Chaotic dynamics of a piecewise cubic map[J]. Physical Review A, 1989, 40(7): 4032–4044 doi: 10.1103/PhysRevA.40.4032
    龙文, 蔡绍洪, 焦建军, 等. 求解大规模优化问题的改进鲸鱼优化算法[J]. 系统工程理论与实践, 2017, 37(11): 2983–2994 doi: 10.12011/1000-6788(2017)11-2983-12

    LONG Wen, CAI Shaohong, JIAO Jianjun, et al. Improved whale optimization algorithm for large scale optimization problems[J]. Systems Engineering-Theory &Practice, 2017, 37(11): 2983–2994 doi: 10.12011/1000-6788(2017)11-2983-12
    AlI M H, MOHAMMED B A D A, ISMAIL A, et al. A new intrusion detection system based on fast learning network and particle swarm optimization[J]. IEEE Access, 2018, 6: 20255–20261 doi: 10.1109/ACCESS.2018.2820092
    BLAKE C l and MERZ C J. UCI Repository of machine learning databases[OL]. http://archive.ics.uci.edu/ml/datasets.html, 1998.
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  1864
  • HTML全文浏览量:  746
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-28
  • 修回日期:  2018-12-03
  • 网络出版日期:  2018-12-14
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回