高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双马尔科夫链的势概率假设密度滤波

刘江义 王春平

刘江义, 王春平. 基于双马尔科夫链的势概率假设密度滤波[J]. 电子与信息学报, 2019, 41(2): 492-497. doi: 10.11999/JEIT180352
引用本文: 刘江义, 王春平. 基于双马尔科夫链的势概率假设密度滤波[J]. 电子与信息学报, 2019, 41(2): 492-497. doi: 10.11999/JEIT180352
Jiangyi LIU, Chunping WANG. Cardinalized Probability Hypothesis Density Filter Based on Pairwise Markov Chains[J]. Journal of Electronics & Information Technology, 2019, 41(2): 492-497. doi: 10.11999/JEIT180352
Citation: Jiangyi LIU, Chunping WANG. Cardinalized Probability Hypothesis Density Filter Based on Pairwise Markov Chains[J]. Journal of Electronics & Information Technology, 2019, 41(2): 492-497. doi: 10.11999/JEIT180352

基于双马尔科夫链的势概率假设密度滤波

doi: 10.11999/JEIT180352
详细信息
    作者简介:

    刘江义:男,1988年生,博士生,研究方向为多目标跟踪、信息融合等

    王春平:男,1965年生,教授,研究方向为图像处理、目标跟踪等

    通讯作者:

    王春平 wchp17@139.com

  • 中图分类号: TP391

Cardinalized Probability Hypothesis Density Filter Based on Pairwise Markov Chains

  • 摘要:

    针对已有的基于双马尔科夫链(PMC)模型的势概率假设密度(PMC-CPHD)滤波算法无法实现的问题,将PMC-CPHD算法改进为多项式形式以便于算法的实现,并给出了改进算法的高斯混合(GM)实现。实验结果表明给出的GM实现能够有效实现多目标跟踪,并且比基于PMC模型的概率假设密度(PMC-PHD)算法的GM实现提高了目标个数估计的稳定性。

  • 图  1  仿真场景及跟踪结果

    图  2  目标个数估计及估计方差

  • GAO Yiyue, JIANG Defu, and LIU Ming. Particle-gating SMC-PHD filter[J]. Signal Processing, 2017, 130: 64–73. doi: 10.1016/j.sigpro.2016.06.017
    杨丹, 姬红兵, 张永权. 未知杂波条件下样本校正的势估计概率假设密度滤波算法[J]. 电子与信息学报, 2018, 40(4): 912–919. doi: 10.11999/JEIT170666

    YANG Dan, JI Hongbing, and ZHANG Yongquan. A cardinalized probability hypothesis density filter with unknown clutter estimation using corrected sample set[J]. Journal of Electronics &Information Technology, 2018, 40(4): 912–919. doi: 10.11999/JEIT170666
    袁常顺, 王俊, 孙进平, 等. 一种幅度信息辅助多伯努利滤波算法[J]. 电子与信息学报, 2016, 38(2): 464–471. doi: 10.11999/JEIT150683

    YUAN Changshun, WANG Jun, SUN Jinping, et al. A multi-bernoulli filtering algorithm using amplitude information[J]. Journal of Electronics &Information Technology, 2016, 38(2): 464–471. doi: 10.11999/JEIT150683
    陈辉, 韩崇昭. Rao-Blackwellized粒子势均衡多目标多伯努利滤波[J]. 控制理论与应用, 2016, 33(2): 146–153. doi: 10.7641/CTA.2016.50588

    CHEN Hui and HAN Chongzhao. Rao-Blackwellized particle cardinality balanced multi-target multi-bernoulli filter[J]. Control Theory &Applications, 2016, 33(2): 146–153. doi: 10.7641/CTA.2016.50588
    QIU Hao, HUANG Gaoming, and GAO Jun. Variational bayesian labeled multi-bernoulli filter with unknown sensor noise statistics[J]. Chinese Journal of Aeronautics, 2016, 29(5): 1378–1384. doi: 10.1016/j.cja.2016.05.002
    朱书军, 刘伟峰, 崔海龙. 基于广义标签多伯努利滤波的可分辨群目标跟踪算法[J]. 自动化学报, 2017, 43(12): 2178–2189. doi: 10.16383/j.aas.2017.c160334

    ZHU Shujun, LIU Weifeng, and CUI Hailong. Multiple resolvable groups tracking using the GLMB filter[J]. Acta Automatica Sinica, 2017, 43(12): 2178–2189. doi: 10.16383/j.aas.2017.c160334
    PETETIN Y and DESBOUVRIES F. Bayesian multi-object filtering for pairwise Markovchains[J]. IEEE Transactions on Signal Processing, 2013, 61(18): 4481–4490. doi: 10.1109/TSP.2013.2271751
    PIECZYNSKI W. Pairwise Markov chains[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 634–639. doi: 10.1109/TPAMI.2003.1195998
    MAHLER R. Tracking targets with pairwise-Markov dynamics[C]. International Conference on Information Fusion, Washington, DC, USA, 2015: 280-286.
    MAHLER R. On multitarget pairwise-Markov models[J]. Society of Photo-Optical Instrumentation Engineers(SPIE) , 2015, 9474 , 94740D: 1–12. doi: 10.1117/12.2177192
    MAHLER R. Multitarget bayes filtering via first-order multitarget moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152–1178. doi: 10.1109/TAES.2003.1261119
    ERDINC O, WILLETT P, and BARSHALOM Y. A physical-space approach for the probability hypothesis density and cardinalized probability hypothesis density filters[C]. Proceedings of the SPIE Conference on Signal and Data Processing of Small Targets, Orlando, USA, 2006, 6236, 623619: 1-12.
    NIE Yongfang and ZHANG Tao. An improved merging algorithm for the gaussian mixture probability hypothesis density filter[C]. Chinese Control and Decision Conference, Chongqing, China, 2017: 5687-5691.
    DONG Peng, JING Zhongliang, GONG Deren, et al. Maneuvering multi-target tracking based on variable structure multiple model GMCPHD filter[J]. Signal Processing, 2017, 141: 158–167. doi: 10.1016/j.sigpro.2017.06.004
    YANG Jinlong, LI Peng, YANG Le, et al. An improved ET-GM-PHD filter for multiple closely-spaced extended target tracking[J]. International Journal of Control, Automation and Systems, 2017, 15(1): 468–472. doi: 10.1007/s12555-015-0193-x
  • 加载中
图(2)
计量
  • 文章访问数:  2202
  • HTML全文浏览量:  721
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-17
  • 修回日期:  2018-09-10
  • 网络出版日期:  2018-09-25
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回