高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多维测量信息的压缩感知多目标无源被动定位算法

余东平 郭艳 李宁 刘杰 杨思星

余东平, 郭艳, 李宁, 刘杰, 杨思星. 基于多维测量信息的压缩感知多目标无源被动定位算法[J]. 电子与信息学报, 2019, 41(2): 440-446. doi: 10.11999/JEIT180333
引用本文: 余东平, 郭艳, 李宁, 刘杰, 杨思星. 基于多维测量信息的压缩感知多目标无源被动定位算法[J]. 电子与信息学报, 2019, 41(2): 440-446. doi: 10.11999/JEIT180333
Dongping YU, Yan GUO, Ning LI, Jie LIU, Sixing YANG. Compressive Sensing Based Multi-target Device-free Passive Localization Algorithm Using Multidimensional Measurement Information[J]. Journal of Electronics & Information Technology, 2019, 41(2): 440-446. doi: 10.11999/JEIT180333
Citation: Dongping YU, Yan GUO, Ning LI, Jie LIU, Sixing YANG. Compressive Sensing Based Multi-target Device-free Passive Localization Algorithm Using Multidimensional Measurement Information[J]. Journal of Electronics & Information Technology, 2019, 41(2): 440-446. doi: 10.11999/JEIT180333

基于多维测量信息的压缩感知多目标无源被动定位算法

doi: 10.11999/JEIT180333
基金项目: 国家自然科学基金(61871400, 61571463),江苏省自然科学基金(BK20171401)
详细信息
    作者简介:

    余东平:男,1989年生,博士生,研究方向为信号处理、无线传感器网络定位

    郭艳:女,1971年生,教授,博士生导师,研究方向为信号处理、压缩感知以及波束形成

    李宁:男,1967年生,副教授,研究方向为认知无线电、自组织网

    杨思星:女,1992年生,博士生,研究方向为信号处理、无源目标定位

    通讯作者:

    郭艳 guoyan_1029@sina.com

  • 中图分类号: TN911.7

Compressive Sensing Based Multi-target Device-free Passive Localization Algorithm Using Multidimensional Measurement Information

Funds: The National Natural Science Foundation of China (61871400, 61571463), The Natural Science Foundation of Jiangsu Province (BK20171401)
  • 摘要:

    无源被动定位是入侵者检测、环境监测以及智能交通等应用的关键问题之一。现有的无源被动定位方法可通过信道状态信息获取多个维度上的测量信息,但是现有方案未能充分挖掘多个信道上的频率分集以提高定位性能。该文提出一种基于多维测量信息的压缩感知多目标无源被动定位算法,在压缩感知框架下利用多维测量信息的频率分集提高定位精度和鲁棒性。根据鞍面模型建立无源字典,将多目标无源被动定位问题建模成多测量向量联合稀疏恢复问题,并利用多维稀疏贝叶斯学习算法估计目标位置向量。仿真结果表明,该算法能有效利用多维测量信息提高定位性能。

  • 图  1  基于压缩感知的多目标无源被动定位基本场景

    图  2  算法迭代次数对定位性能的影响

    图  3  子信道数对定位性能的影响

    图  4  目标个数与平均定位误差的关系

    图  5  信噪比与平均定位误差的关系

    表  1  联合稀疏恢复算法

     (1) 令${\gamma _{{\rm{th}}}} = {10^{ - 3}}$, ${\tau _{\max }} = {10^3}$, ${\eta _{{\rm{th}}}} = - 10\ {\rm{dB}}$, $\gamma = \tau = 0$。
     (2) while ($\gamma \ge {\gamma _{{\rm{th}}}}$或$\tau \le {\tau _{\max }}$) do
     (3)   根据式(16)和式(17),计算${{Σ}}$和${{Π}}$。
     (4)   根据式(19)和式(20),更新参数${\alpha _n}$和${\sigma ^2}$。
     (5)   令$\gamma \leftarrow \parallel{Y} - {{Φ}}{{Π}}\parallel $, $\tau \leftarrow \tau + 1$。
     (6) end while
     (7) 选择使$\left\| {{{{y}}^f} - {{Φ}}{{{Π}} _{ \cdot f}}} \right\|$取得最小值的子信道$\hat f$。
     (8) $\forall n \in \left\{ {1,2,·\!·\!·,N} \right\}$,若$20\lg ({{{Π}} _{nf}}/\mathop {\max }\limits_i |{{{Π}} _{i\hat f}}|) < {\eta _{{\rm{th}}}}$,则${{{Π}} _{n\hat f}} = 0$。
     (9) 令恢复的位置向量$\hat {{θ}} = {{{Π}} _{ \cdot \hat f}}$,目标个数${\widehat K} = |\hat {{θ}}|$。
    下载: 导出CSV

    表  2  平均定位误差与定位均方根误差的比较

    定位算法OMPBPGMPBCSVEM自有算法($F = 5$)自有算法($F = 10$)自有算法($F = 20$)
    平均定位误差3.20281.30282.17950.89550.61960.46310.27440.2584
    定位均方根误差3.38011.57352.45431.58381.00360.83920.67200.4738
    下载: 导出CSV
  • LIU Dawei, SHENG Bin, HOU Fen, et al. From wireless positioning to mobile positioning: An overview of recent advances[J]. IEEE Systems Journal, 2014, 8(4): 1249–1259. doi: 10.1109/JSYST.2013.2295136
    冯奇, 曲长文, 周强. 多运动站异步观测条件下的直接定位算法[J]. 电子与信息学报, 2017, 39(2): 417–422. doi: 10.11999/JEIT160314

    FENG Qi, QU Changwen, and ZHOU Qiang. Direct position determination using asynchronous observations of multiple moving sensors[J]. Journal of Electronics &Information Technology, 2017, 39(2): 417–422. doi: 10.11999/JEIT160314
    孙保明, 郭艳, 李宁, 等. 无线传感器网络中基于压缩感知的动态目标定位算法[J]. 电子与信息学报, 2016, 38(8): 1858–1864. doi: 10.11999/JEIT151203

    SUN Baoming, GUO Yan, LI Ning, et al. Mobile target localization algorithm using compressive sensing in wireless sensor networks[J]. Journal of Electronics &Information Technology, 2016, 38(8): 1858–1864. doi: 10.11999/JEIT151203
    YOUSSEF M, MAH M, and AGRAWALA A. Challenges: Device-free passive localization for wireless environments[C]. Proceedings of the ACM MobiCom’07, Montreal, 2007: 222–229.
    ZHANG Dian, MA Jian, CHEN Quanbin, et al. An RF-based system for tracking transceiver-free objects[C]. Proceedings of the 5th IEEE International Conference on Pervasive Computing and Communications (PerCom’07), White Plains, 2007: 135–144.
    WANG Jie, GAO Qinhua, PAN Miao, et al. Device-free wireless sensing: Challenges, opportunities, and applications[J]. IEEE Network, 2018, 32(2): 132–137. doi: 10.1109/MNET.2017.1700133
    WANG Ju, FANG Dingyi, and YANG Zhe. E-HIPA: An energy-efficient framework for high-precision multi-target adaptive device-free localization[J]. IEEE Transactions on Mobile Computing, 2017, 16(3): 716–729. doi: 10.1109/TMC.2016.2567396
    TALAMPAS M C R and LOW K S. A geometric filter algorithm for robust device-free localization in wireless networks[J]. IEEE Transactions on Industrial Informatics, 2016, 12(5): 1670–1678. doi: 10.1109/TII.2015.2433211
    KHALAJMEHRABADI A, GATSIS N, and AKOPIAN D. Modern WLAN fingerprinting indoor positioning methods and deployment challenges[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1974–2002. doi: 10.1109/COMST.2017.2671454
    WANG Qinghua, YIGITLER H, JANTTI R, et al. Localizing multiple objects using radio tomographic imaging technology[J]. IEEE Transactions on Vehicular Technology, 2016, 65(5): 3641–3656. doi: 10.1109/TVT.2015.2432038
    CANDES E J and WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21–30. doi: 10.1109/MSP.2007.914731
    WANG Ju, FANG Dingyi, CHEN Xiaojing, et al. LCS: Compressive sensing based device-free localization for multiple targets in sensor networks[C]. Proceeding of the IEEE INFOCOM 2013, Turin, 2013: 14–19.
    MAGER B, LUNDRIGAN P, and PATWARI N. Fingerprint-based device-free localization performance in changing environments[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(11): 2429–2438. doi: 10.1109/JSAC.2015.2430515
    YU Dongping, GUO Yan, LI Ning, et al. Dictionary refinement for compressive sensing based device-free localization via the variational EM algorithm[J]. IEEE Access, 2016, 4: 9743–9757. doi: 10.1109/ACCESS.2017.2649540
    YANG Zheng, ZHOU Zimu, and LIU Yunhao. From RSSI to CSI: Indoor localization via channel response[J]. ACM Computing Surveys, 2013, 46(2): 1–32. doi: 10.1145/2543581.2543592
    GAO Qinhua, WANG Jie, MA Xiaorui, et al. CSI-based device-free wireless localization and activity recognition using radio image features[J]. IEEE Transactions on Vehicular Technology, 2017, 66(11): 10346–10356. doi: 10.1109/TVT.2017.2737553
    LEI Qian, ZHANG Haijian, SUN Hong, et al. Fingerprint-based device-free localization in changing environments using enhanced channel selection and logistic regression[J]. IEEE Access, 2018, 6: 2569–2577. doi: 10.1109/ACCESS.2017.2784387
    WANG Jie, GAO Qinhua, PAN Miao, et al. Towards accurate device-free wireless localization with a saddle surface model[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8): 6665–6677. doi: 10.1109/TVT.2015.2476495
    WIPF D P and RAO B D. An empirical Bayesian strategy for solving the simultaneous sparse approximation problem[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3704–3716. doi: 10.1109/TSP.2007.894265
    SAVAZZI S, NICOLI M, CARMINATI F, et al. A Bayesian approach to device-free localization: Modeling and experimental assessment[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(1): 16–29. doi: 10.1109/JSTSP.2013.2286772
    JI Shihao, XUE Ya, and CARIN L. Bayesian compressive sensing[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2346–2356. doi: 10.1109/TSP.2007.914345
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  1742
  • HTML全文浏览量:  630
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-11
  • 修回日期:  2018-11-01
  • 网络出版日期:  2018-11-09
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回