高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于预译码的极化码最大似然简化连续消除译码算法

刘建航 何怡静 李世宝 卢丽金 邓云强

刘建航, 何怡静, 李世宝, 卢丽金, 邓云强. 基于预译码的极化码最大似然简化连续消除译码算法[J]. 电子与信息学报, 2019, 41(4): 959-966. doi: 10.11999/JEIT180324
引用本文: 刘建航, 何怡静, 李世宝, 卢丽金, 邓云强. 基于预译码的极化码最大似然简化连续消除译码算法[J]. 电子与信息学报, 2019, 41(4): 959-966. doi: 10.11999/JEIT180324
Jianhang LIU, Yijing HE, Shibao LI, Lijin LU, Yunqiang DENG. Pre-decoding Based Maximum-likelihood Simplified Successive-cancellation Decoding of Polar Codes[J]. Journal of Electronics & Information Technology, 2019, 41(4): 959-966. doi: 10.11999/JEIT180324
Citation: Jianhang LIU, Yijing HE, Shibao LI, Lijin LU, Yunqiang DENG. Pre-decoding Based Maximum-likelihood Simplified Successive-cancellation Decoding of Polar Codes[J]. Journal of Electronics & Information Technology, 2019, 41(4): 959-966. doi: 10.11999/JEIT180324

基于预译码的极化码最大似然简化连续消除译码算法

doi: 10.11999/JEIT180324
基金项目: 国家自然科学基金青年基金(61601519, 61872385),中央高校基本科研业务费专项资金(18CX02134A, 18CX02137A, 18CX02133A)
详细信息
    作者简介:

    刘建航:男,1978年生,副教授、博士,研究方向为信道编码,移动互联网

    何怡静:女,1994年生,硕士生,研究方向为信道编码

    李世宝:男,1978年生,副教授,研究方向为移动计算

    卢丽金:女,1992年生,硕士生,研究方向为信道编码

    邓云强:男,1993年生,硕士生,研究方向为信道编码

    通讯作者:

    刘建航 liujianhang@upc.edu.cn

  • 中图分类号: TN92

Pre-decoding Based Maximum-likelihood Simplified Successive-cancellation Decoding of Polar Codes

Funds: The National Natural Science Foundation of China (61601519, 61872385), The Fundamental Research Funds for the Central Universities(18CX02134A, 18CX02137A, 18CX02133A)
  • 摘要:

    针对极化码译码串行输出造成较大译码时延的问题,该文提出一种基于预译码的最大似然简化连续消除译码算法。首先对译码树节点存储的似然值进行符号提取并分组处理,得到符号向量组;然后比较符号向量组与该节点的某些信息位的取值情况,发现向量组中储存的正负符号分布规律与该节点的中间信息位的取值具有一一对应的关系;在此基础上对组合码中间的1~2 bit进行预译码;最后结合最大似然译码方法估计组合码中的剩余信息位,从而得到最终的译码结果。仿真结果表明:在不影响误码性能的情况下,所提算法与已有的算法相比可有效降低译码时延。

  • 图  1  SC及SSC译码算法对应的译码树

    图  2  L-REP节点预译码设计

    图  3  PDM-SSC译码框架

    图  4  L-REP节点和L-BiREP节点结构

    图  5  SSC, ML-SSC与PDM-SSC译码算法的误码率和误帧率

    表  1  ${u_{{\rm{mid}}1}}$${u_{{\rm{mid}}0}}$对应${{x}}_{vi}^0$${{x}}_{vi}^1$的取值情况

    ${u_{{\rm{mid}}1}}$${u_{{\rm{mid}}0}}$${{x}}_{vi}^0$${{x}}_{vi}^1$
    00$\left[ {\begin{array}{*{20}{c}} 1&1 \end{array}} \right]$/$\left[ {\begin{array}{*{20}{c}} 0&0 \end{array}} \right]$$\left[ {\begin{array}{*{20}{c}} 1&1 \end{array}} \right]$/$\left[ {\begin{array}{*{20}{c}} 0&0 \end{array}} \right]$
    01$\left[ {\begin{array}{*{20}{c}} 0&1 \end{array}} \right]$/$\left[ {\begin{array}{*{20}{c}} 1&0 \end{array}} \right]$$\left[ {\begin{array}{*{20}{c}} 0&1 \end{array}} \right]$/$\left[ {\begin{array}{*{20}{c}} 1&0 \end{array}} \right]$
    10$\left[ {\begin{array}{*{20}{c}} 0&1 \end{array}} \right]$/$\left[ {\begin{array}{*{20}{c}} 1&0 \end{array}} \right]$$\left[ {\begin{array}{*{20}{c}} 1&1 \end{array}} \right]$/$\left[ {\begin{array}{*{20}{c}} 0&0 \end{array}} \right]$
    11$\left[ {\begin{array}{*{20}{c}} 1&1 \end{array}} \right]$/$\left[ {\begin{array}{*{20}{c}} 0&0 \end{array}} \right]$$\left[ {\begin{array}{*{20}{c}} 0&1 \end{array}} \right]$/$\left[ {\begin{array}{*{20}{c}} 1&0 \end{array}} \right]$
    下载: 导出CSV

    表  2  P个计算单元下L-REP节点和L-BiREP节点的译码时延

    算法L-REP节点的译码时延L-BiREP节点的译码时延
    SSC$ \ge {\log _2}{N_v} + {\tau _r} + 2$$ \ge {\log _2}{N_v} + {\tau _r} + 1$
    ML-SSC$\left( {{2^{{k_v} + 1}} + 1} \right)\left( {{N_v} - 1} \right)/P$$\left( {{2^{{k_v} + 2}} + 1} \right)\left( {{N_v} - 1} \right)/P$
    PDM-SSC$\left( {\left( {{2^{{k_v}}} + 1} \right)\left( {{N_v} - 1} \right) + 1} \right)/P$$\left( {\left( {{2^{{k_v}}} + 1} \right)\left( {{N_v} - 1} \right) + 1} \right)/P$
    下载: 导出CSV

    表  3  P=256, R=0.5时,本文算法与SSC算法时延情况对比

    算法码长时延(时间周期)时延增益(%)
    SSC2048817
    327686973
    PDM-SSC204860625.8
    32768573117.8
    下载: 导出CSV

    表  4  P=256, N=32768时,本文算法与ML-SSC算法时延情况对比

    算法码率译码节点个数时延(时间周期)时延增益(%)
    ML-SSC0.5696679
    0.9603470
    PDM-SSC0.5148573114.2
    0.9114282218.7
    下载: 导出CSV
  • ARIKAN E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels[J]. IEEE Transactions on Information Theory, 2009, 55(7): 3051–3073 doi: 10.1109/TIT.2009.2021379
    İŞCAN O, BÖHNKE R, and XU Wen. Shaped polar codes for higher order modulation[J]. IEEE Communications Letters, 2018, 22(2): 252–255 doi: 10.1109/LCOMM.2017.2766621
    郭锐, 王美洁, 王杰. 基于缩短极化码的MLC NAND Flash差错控制技术研究[J]. 电子与信息学报, 2017, 39(7): 1658–1665 doi: 10.11999/JEIT160864

    GUO Rui, WANG Meijie, and WANG Jie. Research on the MLC NAND Flash error control technology based on polar codes[J]. Journal of Electronics &Information Technology, 2017, 39(7): 1658–1665 doi: 10.11999/JEIT160864
    GULCU T C and BARG A. Achieving secrecy capacity of the wiretap channel and broadcast channel with a confidential component[J]. IEEE Transactions on Information Theory, 2017, 63(2): 1311–1324 doi: 10.1109/TIT.2016.2631223
    朱鸿斌, 戴胜辰, 康凯, 等. 改进型极化码混合自动请求重传法[J]. 电子与信息学报, 2017, 39(5): 1136–1141 doi: 10.11999/JEIT160736

    ZHU Hongbin, DAI Shengchen, KANG Kai, et al. An improved HARQ scheme with polar codes[J]. Journal of Electronics &Information Technology, 2017, 39(5): 1136–1141 doi: 10.11999/JEIT160736
    LEROUX C, RAYMOND A J, SARKIS G, et al. A semi-parallel successive-cancellation decoder for polar codes[J]. IEEE Transactions on Signal Processing, 2013, 61(2): 289–299 doi: 10.1109/TSP.2012.2223693
    HUSMANN C, NIKOLAOU P C, and NIKITOPOULOS K. Reduced latency ML polar decoding via multiple sphere-decoding tree searches[J]. IEEE Transactions on Vehicular Technology, 2018, 67(2): 1835–1839 doi: 10.1109/TVT.2017.2761262
    HASHEMI S A, CONDO C, and GROSS W J. A fast polar code list decoder architecture based on sphere decoding[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63(12): 2368–2380 doi: 10.1109/TCSI.2016.2619324
    ALAMDA-YAZDI A and KSCHISCHANG F R. A simplified successive-cancellation decoder for polar codes[J]. IEEE Communications Letters, 2011, 15(12): 1378–1380 doi: 10.1109/LCOMM.2011.101811.111480
    SARKIS G, GIARD P, VARDY A, et al. Fast polar decoders: algorithm and implementation[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(5): 946–957 doi: 10.1109/JSAC.2014.140514
    HANIF M and ARDAKANI M. Fast successive-cancellation decoding of polar codes: identification and decoding of new nodes[J]. IEEE Communications Letters, 2017, 21(11): 2360–2363 doi: 10.1109/LCOMM.2017.2740305
    HUANG Zhiliang, DIAO Chunjuan, DAI Jianxin, et al. An improvement of modified successive-cancellation decoder for polar codes[J]. IEEE Communications Letters, 2013, 17(12): 2360–2363 doi: 10.1109/LCOMM.2013.110413.132136
    CHOI J and PARK I C. Improved successive-cancellation decoding of polar codes based on recursive syndrome decomposition[J]. IEEE Communications Letters, 2017, 21(11): 2344–2347 doi: 10.1109/LCOMM.2017.2730860
    YOO H and PARK I C. Efficient pruning for successive-cancellation decoding of polar codes[J]. IEEE Communications Letters, 2016, 20(12): 2362–2365 doi: 10.1109/LCOMM.2016.2607167
    SARKIS G and GROSS W J. Increasing the throughput of polar decoders[J]. IEEE Communications Letters, 2013, 17(4): 725–728 doi: 10.1109/LCOMM.2013.021213.121633
    CHASE D. Class of algorithms for decoding block codes with channel measurement information[J]. IEEE Transactions on Information Theory, 1972, 18(1): 170–182 doi: 10.1109/TIT.1972.1054746
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  1936
  • HTML全文浏览量:  565
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-11
  • 修回日期:  2019-01-17
  • 网络出版日期:  2019-01-30
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回