高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向TDOA被动定位的定位节点选择方法

郝本建 王林林 李赞 赵越

郝本建, 王林林, 李赞, 赵越. 面向TDOA被动定位的定位节点选择方法[J]. 电子与信息学报, 2019, 41(2): 462-468. doi: 10.11999/JEIT180293
引用本文: 郝本建, 王林林, 李赞, 赵越. 面向TDOA被动定位的定位节点选择方法[J]. 电子与信息学报, 2019, 41(2): 462-468. doi: 10.11999/JEIT180293
Benjian HAO, Linlin WANG, Zan LI, Yue ZHAO. Sensor Selection Method for TDOA Passive Localization[J]. Journal of Electronics & Information Technology, 2019, 41(2): 462-468. doi: 10.11999/JEIT180293
Citation: Benjian HAO, Linlin WANG, Zan LI, Yue ZHAO. Sensor Selection Method for TDOA Passive Localization[J]. Journal of Electronics & Information Technology, 2019, 41(2): 462-468. doi: 10.11999/JEIT180293

面向TDOA被动定位的定位节点选择方法

doi: 10.11999/JEIT180293
基金项目: 国家自然科学基金重点项目(61631015),陕西省重点科技创新团队计划(2016KCT-01),国家自然科学基金(61471395),中央高校基础科研业务费(7215433803)
详细信息
    作者简介:

    郝本建:男,1982年生,副教授,主要研究方向为无线通信、电磁频谱监测、无线传感器网络、信号源定位与跟踪等

    王林林:女,1993年生,硕士生,研究方向为信号源定位与跟踪

    李赞:女,1975年生,教授、博士生导师,主要研究方向为突发通信、数字信号处理、无线通信系统等

    赵越:男,1994年生,博士生,研究方向为被动定位及信号处理

    通讯作者:

    郝本建 bjhao@xidian.edu.cn

  • 中图分类号: TN911.23

Sensor Selection Method for TDOA Passive Localization

Funds: The Key Project of National Natural Science Foundation of China (61631015), The Key Scientific and Technological Innovation Team Plan of Shaanxi Province (2016KCT-01), The National Natural Science Foundation of China (61471395), The Fundamental Research Funds for the Central Universities (7215433803)
  • 摘要:

    该文主要研究一种面向到达时间差(TDOA)被动定位的定位节点选择方法。首先,通过经典的闭式解析算法将TDOA非线性方程转化为伪线性方程,并使用位置误差的协方差矩阵来度量定位精度。其次,在可用节点数量给定的条件下,在数学上将定位节点选择问题转化为最小化位置误差协方差矩阵的迹这一非凸优化问题。然后,将非凸优化问题凸松弛并化为半正定规划问题,从而快速有效地求解出最优的定位节点组合。仿真结果表明,所提节点优选方法的性能非常接近穷尽搜索方法,而且克服了穷尽搜索方法运算复杂度高、时效性差的不足,从而验证了所提方法的有效性。

  • 图  1  参考节点接收信噪比变化下的RMSE

    图  2  不同测量噪声条件下的RMSE

    图  3  不同参考节点接收信噪比条件下的RMSE

    图  4  不同参考节点接收信噪比条件下的平均RMSE

  • 胡勤振, 苏洪涛, 刘子威, 等. 配准误差下的多基地雷达目标检测算法[J]. 电子与信息学报, 2017, 39(1): 88–94. doi: 10.11999/JEIT160207

    HU Qinzhen, SU Hongtao, LIU Ziwei, et al. Target detection algorithm for multistatic radar with registration errors[J]. Journal of Electronics &Information Technology, 2017, 39(1): 88–94. doi: 10.11999/JEIT160207
    YASSIN A, NASSER Y, AWAD M, et al. Recent advances in indoor localization: A survey on theoretical approaches and applications[J]. IEEE Communications Surveys & Tutorials, 2017, 19(2): 1327–1346. doi: 10.1109/COMST.2016.2632427
    CHEN Hongyang, WANG Gang, WANG Zizhuo, et al. Non-line-of-sight node localization based on semi-definite programming in wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2012, 11(1): 108–116. doi: 10.1109/TWC.2011.110811.101739
    CHEN Hongyang, SHI Qingjiang, TAN Rui, et al. Mobile element assisted cooperative localization for wireless sensor networks with obstacles[J]. IEEE Transactions on Wireless Communications, 2010, 9(3): 956–963. doi: 10.1109/TWC.2010.03.090706
    SHI Qingjiang, HE Chen, CHEN Hongyang, et al. Distributed wireless sensor network localization via sequential greedy optimization algorithm[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3328–3340. doi: 10.1109/TSP.2010.2045416
    HENTATI A, DRIOUCH E, FRIGON J, et al. Fair and low complexity node selection in energy harvesting wireless sensor networks[J]. IEEE Systems Journal, 2018, 99(1): 1–11. doi: 10.1109/JSYST.2017.2771294
    JOSHI S and BOYD S. Sensor selection via convex optimization[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 451–462. doi: 10.1109/TSP.2008.2007095
    LIU S, CHEPURI S P, FARDAD M, et al. Sensor selection for estimation with correlated measurement noise[J]. IEEE Transactions on Signal Processing, 2016, 64(13): 3509–3522. doi: 10.1109/TSP.2016.2550005
    CHEPURI S P and LEUS G. Sparsity-promoting sensor selection for non-linear measurement models[J]. IEEE Transactions on Signal Processing, 2014, 63(3): 684–698. doi: 10.1109/TSP.2014.2379662
    RAO S, CHEPURI S P, and LEUS G. Greedy sensor selection for non-linear models[C]. IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing(CAMSAP), Cancun, Mexico, 2015, (2): 241–244.
    HO K C, LU Xiaoming, and KOVAVISARUCH L. Source localization using TDOA and FDOA measurements in the presence of receiver location errors: Analysis and solution[J]. IEEE Transactions on Signal Processing, 2007, 55(2): 684–696. doi: 10.1109/TSP.2006.885744
    QU Xiaomei and XIE Lihua. An efficient convex constrained weighted least squares source localization algorithm based on TDOA measurements[J]. Signal Processing, 2016, 119(2): 142–152.
    HO K C and XU Wenwei. An accurate algebraic solution for moving source location using TDOA and FDOA measurements[J]. IEEE Transactions on Signal Processing, 2004, 52(9): 2453–2463. doi: 10.1109/TSP.2004.831921
    曲付勇, 孟祥伟. 基于约束总体最小二乘方法的到达时差到达频差无源定位算法[J]. 电子与信息学报, 2014, 36(5): 1075–1081. doi: 10.3724/SP.J.1146.2013.01019

    QU Fuyong and MENG Xiangwei. Source localization using TDOA and FDOA measurements based on constrained total least squares algorithm[J]. Journal of Electronics &Information Technology, 2014, 36(5): 1075–1081. doi: 10.3724/SP.J.1146.2013.01019
    RUI Liyang, CHEN Shanjie, and HO K C. Anchor nodes refinement in joint localization and synchronization of a sensor node[C]. IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), Brisbane, Australia, 2015: 2834–2838.
    HO K C and SUN Ming. Passive source localization using time differences of arrival and gain ratios of arrival[J]. IEEE Transactions on Signal Processing, 2008, 56(2): 464–477. doi: 10.1109/TSP.2007.906728
    HO K C. Bias reduction for an explicit solution of source localization using TDOA[J]. IEEE Transactions on Signal Processing, 2012, 60(5): 2101–2114. doi: 10.1109/TSP.2012.2187283
    YANG Xiaojun and NIU Ruixin. Adaptive sensor selection for nonlinear tracking via sparsity-promoting approaches[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018. doi: 10.1109/TAES.2018.2805258
    GRANT M, BOYD S, and YE Y. CVX Version 2.1. Matlab Software for Disciplined Convex Programming[OL]. www.stanford.edu/boyd/cvx/, 2017.
  • 加载中
图(4)
计量
  • 文章访问数:  1702
  • HTML全文浏览量:  913
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-28
  • 修回日期:  2018-11-16
  • 网络出版日期:  2018-11-22
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回