高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于两步方位重采样的中轨SAR聚焦方法

刘文康 景国彬 孙光才 陈权 邢孟道

刘文康, 景国彬, 孙光才, 陈权, 邢孟道. 基于两步方位重采样的中轨SAR聚焦方法[J]. 电子与信息学报, 2019, 41(1): 136-142. doi: 10.11999/JEIT180238
引用本文: 刘文康, 景国彬, 孙光才, 陈权, 邢孟道. 基于两步方位重采样的中轨SAR聚焦方法[J]. 电子与信息学报, 2019, 41(1): 136-142. doi: 10.11999/JEIT180238
Wenkang LIU, Guobin JING, Guangcai SUN, Quan CHEN, Mengdao XING. Medium-earth-orbit SAR Data Focusing Method Based on Two-step Azimuth Resampling[J]. Journal of Electronics & Information Technology, 2019, 41(1): 136-142. doi: 10.11999/JEIT180238
Citation: Wenkang LIU, Guobin JING, Guangcai SUN, Quan CHEN, Mengdao XING. Medium-earth-orbit SAR Data Focusing Method Based on Two-step Azimuth Resampling[J]. Journal of Electronics & Information Technology, 2019, 41(1): 136-142. doi: 10.11999/JEIT180238

基于两步方位重采样的中轨SAR聚焦方法

doi: 10.11999/JEIT180238
基金项目: 国家重点研发计划(2017YFC1405600),国家自然科学基金创新群体基金(61621005),中央高校基本业务费(JB180213)
详细信息
    作者简介:

    刘文康:男,1994年生,博士生,研究方向为合成孔径雷达成像

    景国彬:男,1990年生,博士,研究方向为合成孔径雷达成像

    孙光才:男,1984年生,副教授,研究方向为新体制雷达成像、运动目标检测成像

    陈权:男,1995年生,硕士生,研究方向为星载合成孔径雷达成像

    邢孟道:男,1975年生,教授,研究方向为雷达探测、雷达成像、运动目标检测成像

    通讯作者:

    刘文康 wkliu@xidian.edu.cn

  • 中图分类号: TN957.52

Medium-earth-orbit SAR Data Focusing Method Based on Two-step Azimuth Resampling

Funds: The National Key R&D Program of China (2017YFC1405600), The Foundation for Innovotive Research Groups of the National Natural Science Foundation of China (61621005), The Fundamental Research Funds for the Central Universities (JB180213)
  • 摘要:

    中轨轨道显著的弯曲特性导致中轨SAR信号存在2维空变,因此大场景成像对于中轨SAR仍然是个难题。该文使用参数2维空变的4阶多项式模型对信号进行建模。同时提出一种基于两步方位插值的信号方位空变校正方法,通过方位时域重采样可以校正参考距离上不同方位目标点的多普勒调频率的线性和2次空变,距离向利用CS/RMA算法即可校正场景中所有点目标的距离徙动,而第2步多普勒重采样则能够校正剩余的多普勒参数的空变特性,包括剩余的距离方位耦合空变,以及高阶多普勒参数空变。通过两步插值法能够完全校正整个场景目标信号的方位空变特性,使得传统频域成像算法可以应用于中轨SAR的大场景聚焦。最后通过所提方法与参考方法的仿真结果对比,验证了所提方法的有效性。

  • 图  1  基于两步方位重采样的中轨SAR成像处理流程图

    图  2  调频率方位空变校正

    图  3  多普勒域重采样校正多普勒参数空变示意图

    图  4  斜距模型误差分析

    图  5  仿真场景中点目标布置

    图  6  C, E有无各步骤的处理结果对比

    图  7  纬度幅角为180°时的成像仿真结果

    表  1  仿真参数

    参数类型参数名称数值
    轨道参数轨道高度(km)15000
    离心率0
    倾角(°)90
    近地点幅角(°)0
    雷达参数频率(GHz)5.4
    带宽(MHz)103.4
    PRF(Hz)4000
    入射角(°)40
    合成孔径时间(s)43.1
    地表距离分辨率(m)2
    地表方位分辨率(m)2
    场景参数场景方位宽度(km)100
    场景距离宽度(km)100
    下载: 导出CSV

    表  2  成像质量评估(dB)

    目标(行,列)PSLR ISLR
    距离向方位向距离向方位向
    D(11,1)–13.27–13.27 –10.06–10.06
    B(6,6) –13.24–13.26–10.04–10.06
    E(1,11)–13.27–13.27–10.06–10.05
    下载: 导出CSV
  • ROLF W and STEFAN B. The TerraSAR-X mission and system design[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 606–615. doi: 10.1109/TGRS.2009.2031062
    ZHANG Tianyi, DING Zegang, TIAN Weiming, et al. A 2-D nonlinear chirp scaling algorithm for high squint GEO SAR imaging based on optimal azimuth polynomial compensation[J]. IEEE Journal of Selected Topics in Applied Earth Observations And Remote Sensing, 2017, 10(12): 5724–5735. doi: 10.1109/JSTARS.2017.2765353
    STEPHEN H. System design for geosynchronous synthetic aperture radar missions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(12): 7750–7763. doi: 10.1109/TGRS.2014.2318171
    JALAL M, PACO L D, and GERHARD K. Potentials and limitations of MEO SAR[C]. European Conference on Synthetic Aperture Radar, Hamburg, Germany, 2016: 1–5.
    TIAN Ye, HU Cheng, DONG Xichao, et al. Theoretical analysis and verification of time variation of background ionosphere on geosynchronous SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 721–725. doi: 10.1109/LGRS.2014.2360235
    LI Liang, HONG Jun, and MING Feng. Study about ionospheric effects on medium-earth-orbit SAR imaging[C]. 2014 IEEE Radar Conference, Cincinnati, USA, 2014: 27–31.
    温雪娇, 仇晓兰, 尤红建, 等. 高分辨率星载SAR起伏运动目标精聚焦与参数估计方法[J]. 雷达学报, 2017, 6(2): 213–220. doi: 10.12000/JR17005

    WEN Xuejiao, QIU Xiaolan, YOU Hongjian, et al. Focusing and parameter estimation of fluctuating targets in high resolution space-borne SAR[J]. Journal of Radars, 2017, 6(2): 213–220. doi: 10.12000/JR17005
    HUANG Lijia, QIU Xiaolan, HU Donghui, et al. Focusing of medium-earth-orbit SAR with advanced nonlinear chirp scaling algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 500–508. doi: 10.1109/TGRS.2010.2053211
    BAO Ming, XING Mengdao, LI Yachao, et al. Two-dimensional spectrum for MEO SAR processing using a modified advanced hyperbolic range equation[J]. Electronics Letters, 2011, 47(18): 1043–1045. doi: 10.1049/el.2011.1322
    TANG Shiyang, LIN Chunhui, ZHOU Yu, et al. Processing of long integration time spaceborne SAR data with curved orbit[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 52(2): 888–904. doi: 10.1109/TGRS.2017.2756109
    CHEN Jie, KUANG Hui, YANG Wei, et al. A novel imaging algorithm for focusing high-resolution spaceborne SAR data in squinted sliding-spotlight mode[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(10): 1577–1581. doi: 10.1109/LGRS.2016.2598066
    RICHARD B. A comparison of range-Doppler and wavenumber domain SAR focusing algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(4): 706–713. doi: 10.1109/36.158864
    HUANG Lijia, QIU Xiaolan, HU Donghui, et al. Medium-Earth-Orbit SAR focusing using range Doppler algorithm with integrated two-step azimuth perturbation[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(3): 626–630. doi: 10.1109/LGRS.2014.2353674
    WANG Yan, LI Jingwen, XU Feng, et al. A new nonlinear chirp scaling algorithm for high-squint high-resolution SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(12): 2225–2229. doi: 10.1109/LGRS.2017.2758386
    LI Zhenyu, XING Mengdao, LIANG Yi, et al. A frequency-domain imaging algorithm for highly squinted SAR mounted on maneuvering platforms with nonlinear trajectory[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7): 4023–4038. doi: 10.1109/TGRS.2016.2535391
    LI Zhenyu, LIANG Yi, XING Mengdao, et al. An improved range model and omega-k-based imaging algorithm for high-squint SAR with curved trajectory and constant acceleration[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(5): 656–660. doi: 10.1109/LGRS.2016.2533631
    LI Dexin, WU Manqing, SUN Zaoyu, et al. Modeling and processing of two-dimensional spatial-variant geosynchronous SAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 3999–4009. doi: 10.1109/JSTARS.2015.2418814
    DAVIDE D and ANDREA M G. High-resolution spaceborne SAR focusing by SVD-Stolt[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(4): 639–643. doi: 10.1109/LGRS.2007.903081
    CHEN Jianlai, SUN Guangcai, YANG Jun, et al. A TSVD-NCS algorithm in range-Doppler domain for geosynchronous synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11): 1631–1635. doi: 10.1109/LGRS.2016.2599224
    HAUKE F, ELKE B, and JOSEF M. Total zero Doppler steering—A new method for minimizing the Doppler centroid[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(2): 141–145. doi: 10.1109/LGRS.2005.844591
    DANIEL P S. Analytic yaw-pitch steering for side-looking SAR with numerical roll algorithm for incidence angle[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(9): 3587–3594. doi: 10.1109/TGRS.2012.2183375
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  2034
  • HTML全文浏览量:  408
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-14
  • 修回日期:  2018-09-19
  • 网络出版日期:  2018-10-08
  • 刊出日期:  2019-01-01

目录

    /

    返回文章
    返回