高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

云无线接入网络高能效功率分配和波束成形联合优化算法

左加阔 杨龙祥 鲍楠 卢官明

左加阔, 杨龙祥, 鲍楠, 卢官明. 云无线接入网络高能效功率分配和波束成形联合优化算法[J]. 电子与信息学报, 2018, 40(12): 2979-2985. doi: 10.11999/JEIT180218
引用本文: 左加阔, 杨龙祥, 鲍楠, 卢官明. 云无线接入网络高能效功率分配和波束成形联合优化算法[J]. 电子与信息学报, 2018, 40(12): 2979-2985. doi: 10.11999/JEIT180218
Jiakuo ZUO, Longxiang YANG, Nan BAO, Guanming LU. Energy Efficient Joint Power Allocation and Beamforming for Cloud Radio Access Network[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2979-2985. doi: 10.11999/JEIT180218
Citation: Jiakuo ZUO, Longxiang YANG, Nan BAO, Guanming LU. Energy Efficient Joint Power Allocation and Beamforming for Cloud Radio Access Network[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2979-2985. doi: 10.11999/JEIT180218

云无线接入网络高能效功率分配和波束成形联合优化算法

doi: 10.11999/JEIT180218
基金项目: 江苏省博士后基金(SBH17024),江苏省高校自然科学基金(15KJB510026),江苏省自然科学基金(BK20150866),南京邮电大学引进人才基金(NY215046, NY217056),国家自然科学基金(61801237, 61701255)
详细信息
    作者简介:

    左加阔:男,1985年生,讲师,研究方向为云无线接入网络资源管理和干扰抑制等

    杨龙祥:男,1966年生,教授,研究方向为移动无线通信和物联网等

    鲍楠:女,1985年生,讲师,研究方向为异构网络资源优化和干扰抑制等

    卢官明:男,1965年生,教授,研究方向为信息处理、模式识别等

    通讯作者:

    左加阔  zuojiakuo@njupt.edu.cn

  • 中图分类号: TN929.53

Energy Efficient Joint Power Allocation and Beamforming for Cloud Radio Access Network

Funds: The Postdoctoral Fund of Jiangsu Province (SBH17024), The Jiangsu University of Natural Science Foundation (15KJB510026), The Natural Science Foundation of Jiangsu Province (BK20150866), The Introduction of Talent Fund of Nanjing University of Posts and Telecommunications (NY215046, NY217056), The National Natural Science Fundation of China (61801237, 61701255)
  • 摘要: 针对云无线接入网络(C-RAN)的资源分配问题,该文采用max-min公平准则作为优化准则,以C-RAN用户的能量效率作为优化目标函数,在满足最大发射功率和最小传输速率约束条件下,通过最大化最差链路的能量效率来实现用户发射功率和无线远端射频单元(RRHs)波束成形向量的联合优化。上述优化问题属于非线性、分式规划问题,为了方便求解,首先将原优化问题转化为差分形式的优化问题,然后通过引入变量将差分形式的、非平滑优化问题转化为平滑优化问题。最终,提出一种双层迭代功率分配和波束成形算法。在仿真实验中,将该文算法与传统的非能效资源分配算法和能量效率最大化算法进行了比较,实验结果证明该文算法在改进C-RAN能量效率和提高资源分配公平性方面的有效性。
  • 图  1  能量效率随迭代次数的变化

    图  2  能量效率随发射功率门限值的变化

    图  3  能量效率随天线数的变化

    图  4  公平性系数随用户数目N的变化

    图  5  每个用户的能量效率对比

    表  1  Dinkelbach算法求解优化问题式(6)

     外循环:
     (1)根据式(9)和式(10)计算 $P_{\rm lb}^{\rm{total}}$and $P_{\rm ub}^{\rm{total}}$,令 $t = 1$, ${\mathbb{I}^1} =( - \infty, $
       $+\infty)$,选取 ${\lambda ^1} \in {\mathbb{I}^1}$,并设置迭代终止精度阈值 $\varepsilon > 0$
     (2)对于 ${\lambda ^t}$,通过求解优化问题式(6)得到 ${p_{n,t}}$和 ${{w}_{n,t}}$,n=1,2,···,N
     (3)计算 $F\left( {{\lambda ^t}} \right) = \mathop {\min }\limits_n \left\{ {{R_n}\left( {{p_{n,t}},{{w}_{n,t}}} \right) - \lambda P_n^{\rm{total}}\left( {{p_{n,t}}} \right)} \right\}$
     (4)根据式 (11) 和式 (12)更新区间 $\left[ {\alpha _{\min }^t,\alpha _{\max }^t} \right]$
     (5)更新 ${\mathbb{I}^{t + 1}} = {\mathbb{I}^t} \cap \left[ {\alpha _{\min }^t,\alpha _{\max }^t} \right]$,并选取 ${\lambda ^t} \in {\mathbb{I}^{t + 1}}$
     (6)如果 $\left| {F\left( {{\lambda ^t}} \right)} \right| \ge \varepsilon $,令 $t = t + 1$
     (7)重复步骤2~步骤6,直到 $\left| {F\left( {{\lambda ^t}} \right)} \right| < \varepsilon $
    下载: 导出CSV

    表  2  求解优化问题式(13)的步骤

      内循环
     (1)初始化 ${\alpha _n},{\beta _n},{\chi _n}$, ${{w}_{n}}$
     (2)repeat
     (3)根据式(19)更新 ${p_n}$
       由式(21)、式(23)计算 ${\varGamma _n}$和 ${\phi _n}$,根据式(22)计算 ${{w}_{n}}$
     (4) $\tau = \tau + 1$, 根据公式(26),式(27),式(28)更新 ${\alpha _n}\left( \tau \right)$, ${\beta _n}\left( \tau \right)$,
       ${\chi _n}\left( \tau \right)$
     (5)until ${\alpha _n}\left( {\tau + 1} \right)$, ${\beta _n}\left( {\tau + 1} \right)$, ${\chi _n}\left( {\tau + 1} \right)$收敛
    下载: 导出CSV
  • ZHANG Deyu, CHEN Zhigang, CAI Lin, et al. Resource allocation for green cloud radio access networks with hybrid energy supplies[J]. IEEE Transactions on Vehicular Technology, 2018, 67(2): 1684–1697 doi: 10.1109/TVT.2017.2754273
    DARIO P, ABOLFAZI H, and TUYEN X. Elastic resource utilization framework for high capacity and energy efficiency in cloud RAN[J]. IEEE Communications Magazine, 2016, 54(1): 26–32 doi: 10.1109/MCOM.2016.7378422
    SAXENA N, ROY A, and KIM H. Traffic-aware cloud RAN: A key for green 5G networks[J]. IEEE Journal of Selected Areas in Communications, 2016, 34(4): 1010–1021 doi: 10.1109/JSAC.2016.2549438
    YOON C and CHO D H. Energy efficient beamforming and power allocation in dynamic TDD based C-RAN system[J]. IEEE Communications Letters, 2015, 19(10): 1806–1809 doi: 10.1109/LCOMM.2015.2469294
    LI Peirong and RENG Kaiten. Channel-aware resource allocation for energy-efficient cloud radio access networks under outage specifications[J]. IEEE Transactions on Wireless Communications, 2017, 16(11): 7389–7403 doi: 10.1109/TWC.2017.2748104
    ZHAO Zhongyuan, PENG Mugen, DING Zhiguo, et al. Cluster content caching: an energy-efficient approach to improve quality of service in cloud[J]. IEEE Journal of Selected Areas in Communications, 2016, 34(5): 1207–1221 doi: 10.1109/JSAC.2016.2545384
    PENG Mugen, WANG Yayun, DANG Tian, et al. Cost-efficient resource allocation in cloud radio access networks with heterogeneous fronthaul expenditures[J]. IEEE Transactions on Wireless Communications, 2017, 16(7): 4626–4638 doi: 10.1109/TWC.2017.2700841
    DAI Binbin and YU Wei. Energy efficiency of downlink transmission strategies for cloud radio access networks[J]. IEEE Journal of Selected Areas in Communications, 2016, 34(4): 1037–1050 doi: 10.1109/JSAC.2016.2544459
    YANG Jiaxin, CHAMPAGNE B, ZOU Yulong, et al. Centralized energy-efficient multiuser multiantenna relaying in next-generation radio access networks[J]. IEEE Transactions on Vehicular Technology, 2017, 66(9): 7913–7924 doi: 10.1109/TVT.2017.2677880
    WANG Yong, MA Lin, XU Yubin, et al. Computationally efficient energy optimization for cloud radio access networks with CSI uncertainty[J]. IEEE Transactions on Communications, 2017, 65(12): 1–15 doi: 10.1109/TCOMM.2017.2737014
    LI Yuzhou, SHENG Min, TAN W C, et al. Energy-efficient subcarrier assignment and power allocation in OFDM system with max-min fairness guarantees[J]. IEEE Transactions on Communications, 2015, 63(9): 3183–3195 doi: 10.1109/TCOMM.2015.2450724
    NGUYEN T D and HAN Y. A proportional fairness algorithm with QoS Provision in downlink OFDM system[J]. IEEE Communications Letters, 2006, 10(11): 760–762 doi: 10.1109/LCOMM.2006.060750
    CROUZEIX J P, FERLAND J A, and SCHAIBLE S. Algorithm for generalized fractional programs[J]. Journal of Optimization Theory and Applications, 1985, 47(1): 35–49 doi: 10.1007/BF00941314
    CHEN H J, SCHAIBLE S, and SHEN R L. Generic algorithm for generalized fractional programming[J]. Journal of Optimization Theory and Applications, 2009, 141(1): 93–105 doi: 10.1007/s10957-008-9499-7
    BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge, England: Cambridge University Press, 2004: 215–223.
    VENTURINO L, PRASSAD N, and WANG Xiaodong. Coordinated liner beamforming in downlink muti-cell wireless networks[J]. IEEE Transactions on Wierless Communicaitons, 2010, 9(4): 1451–1461 doi: 10.1109/TWC.2010.04.090553
    BOYD S, XIAO Lin, and MUTAPCIC A. Subgradient Methods[OL]. http://101.96.10.63/web.mit.edu/6.976/www/notes/subgrad_method.pdf, 2003.
    PENG Mugen, XIANG Hongyu, Chen Yangyuan, et al. Inter-tier interfernce suppression in heterogeneous cloud radio access networks[J]. IEEE Access, 2015, 3: 2441–2455 doi: 10.1109/ACCESS.2015.2497268
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  2259
  • HTML全文浏览量:  754
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-07
  • 修回日期:  2018-08-16
  • 网络出版日期:  2018-08-29
  • 刊出日期:  2018-12-01

目录

    /

    返回文章
    返回