SHAMIR A. How to share a secret[J]. Association for Computing Machinery, 1979, 22(11): 612–613 doi: 10.1145/359168.359176
|
BLAKLEY G R. Safeguarding cryptographic keys[C]. IEEE Computer Society, New York, America, 1979: 313–317. doi: 10.1109/AFIPS.1979.98.
|
YUAN Dazeng, HE Mingxing, ZENG Shengke, et al. (t,p)-Threshold point function secret sharing scheme based on polynomial interpolation and its application[C]. IEEE/ACM, International Conference on Utility and Cloud Computing. Texas, USA, 2017: 269–275.
|
SONG Yun, LUO Yu, and WANG Wenhua. Multiparty quantum direct secret sharing of classical information with Bell states and Bell measurements[J]. International Journal of Theoretical Physics, 2018, 57(5): 1559–1571 doi: 10.1007/s10773-018-3681-y
|
LIU Chengji, LI Zhihui, BAI Chenming, et al. Quantum-secret-sharing scheme based on local distinguishability of orthogonal seven-qudit entangled states[J]. International Journal of Theoretical Physics, 2018, 57(2): 428–442 doi: 10.1007/s10773-017-3574-5
|
WANG Feng , ZHOU Yousheng, and LI Daofeng. Dynamic threshold changeable multi‐policy secret sharing scheme[J]. Security and Communication Networks, 2016, 8(18): 3653–3658 doi: 10.1002/sec.1288
|
BASIT A, KUMAR N C, VENKAIAH V C, et al. Multi-stage multi-secret sharing scheme for hierarchical access structure[C]. International Conference on Computing, Communication and Automation. Noida, India, 2017: 556–563.
|
PILARAM H and EGHLIDOS T. An efficient lattice based multi-stage secret sharing scheme[J]. IEEE Transactions on Dependable and Secure Computing, 2017, 14(1): 2–8 doi: 10.1109/TDSC.2015.2432800
|
MENG Li, JIA Yu, and HAO Rong. A cellular automata based verifiable multi-secret sharing scheme without a trusted dealer[J]. Chinese Journal of Electronics, 2017, 26(2): 313–318 doi: 10.1049/cje.2017.01.026
|
WANG Na, FU Junsong, and ZENG Jiwen. Verifiable secret sharing scheme without dealer based on vector space access structures over bilinear groups[J]. Electronics Letters, 2018, 54(2): 77–79 doi: 10.1049/el.2017.1840
|
谷婷. 无可信中心可验证可更新的向量空间秘密共享[J]. 科技与创新, 2018(3): 29–33 doi: 10.15913/j.cnki.kjycx.2018.03.029GU Ting. No trusted center verifiable updateable vector space secret sharing[J]. Science and Technology&Innovation, 2018(3): 29–33 doi: 10.15913/j.cnki.kjycx.2018.03.029
|
ESLAMI Z, PAKNIAT N, and NOROOZI M. Hierarchical threshold multi-secret sharing scheme based on birkhoff interpolation and cellular automata[C]. Csi IEEE International Symposium on Computer Architecture and Digital Systems, Tehran, Iran, 2015: 1–6.
|
同济大学数学系编. 工程数学线性代数[M]. 北京: 高等教育出版社, 2014: 124–128.School of Mathematic Sciences, Tongji University. Engineering Mathematics, Linear Algebra[M]. Beijing: Higher Education Press, 2014: 124–128.
|
曹尔强, 张沂, 曹晔, 等. " 软件黑盒子”文件加锁和加密的一个方法[J]. 长春邮电学院学报, 1991(3): 11–14CAO Erqiang, ZHANG Yi, CAO Hua, et al. A technique of locking a disk and secreting a whole disk[J]. Journal of Changchun Post&Telecommunication Institute, 1991(3): 11–14
|
DIFFIE W and HELLMAN M E. New directions in cryptography[J]. IEEE Transactions on Information Theory, 1976, 22(6): 644–654 doi: 10.1109/TIT.1976.1055638
|