高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于掩盖效应和梯度信息的无参考噪声图像质量评价改进算法

罗洪艳 朱子岩 林睿 林臻 廖彦剑

罗洪艳, 朱子岩, 林睿, 林臻, 廖彦剑. 基于掩盖效应和梯度信息的无参考噪声图像质量评价改进算法[J]. 电子与信息学报, 2019, 41(1): 210-218. doi: 10.11999/JEIT180195
引用本文: 罗洪艳, 朱子岩, 林睿, 林臻, 廖彦剑. 基于掩盖效应和梯度信息的无参考噪声图像质量评价改进算法[J]. 电子与信息学报, 2019, 41(1): 210-218. doi: 10.11999/JEIT180195
Hongyan LUO, Ziyan ZHU, Rui LIN, Zhen LIN, Yanjian LIAO. Improved No-reference Noisy Image Quality Assessment Based on Masking Effect and Gradient Information[J]. Journal of Electronics & Information Technology, 2019, 41(1): 210-218. doi: 10.11999/JEIT180195
Citation: Hongyan LUO, Ziyan ZHU, Rui LIN, Zhen LIN, Yanjian LIAO. Improved No-reference Noisy Image Quality Assessment Based on Masking Effect and Gradient Information[J]. Journal of Electronics & Information Technology, 2019, 41(1): 210-218. doi: 10.11999/JEIT180195

基于掩盖效应和梯度信息的无参考噪声图像质量评价改进算法

doi: 10.11999/JEIT180195
基金项目: 科技部国家重点研发计划(2016YFC0107113),重庆市重点产业共性关键技术创新专项(CSTC2015ZDCY-ZTZXX0002)
详细信息
    作者简介:

    罗洪艳:女,1976年生,博士,副教授,研究方向为医学图像处理

    朱子岩:男,1993年生,硕士生,研究方向为图像质量评价、数字全息成像

    林睿:女,1995年生,硕士生,研究方向为图像质量评价、数字全息成像

    林臻:女,1995年生,硕士生,研究方向为图像质量评价、数字全息成像

    廖彦剑:男,1976年生,博士,副教授,研究方向为医疗仪器及医学图像处理

    通讯作者:

    廖彦剑 azurelyj@163.com

  • 中图分类号: TP391

Improved No-reference Noisy Image Quality Assessment Based on Masking Effect and Gradient Information

Funds: The National Key R & D Program of Ministry of Science and Technology (2016YFC0107113), The Generality Critical Technology Innovation Special Items of Key Industry in Chongqing (CSTC2015ZDCY-ZTZXX0002)
  • 摘要:

    针对目前大多数噪声图像质量评价算法借助域变换或机器学习所带来的运算量大、训练过程繁复等弊端,以及依赖人工设置固定阈值存在普适性不佳的问题,该文改进了一种基于掩盖效应的空域噪声图像质量评价算法。首先依据Hosaka原理提出层递进的分块规则,将图像分成与其内容频率分布高低相符的不同尺寸的子块并赋予相应的掩盖权值;然后通过提取像素点梯度信息,经两步检噪实现子块噪点甄别;再使用掩盖权值对子块噪声污染指标加权得到初步质量评价结果;最终修正和归一化后为整图质量评价结果——改进的无参考峰值信噪比(MNRPSNR)。应用该算法在LIVE和TID2008图像质量评价数据库上对多种噪声类型图像进行实验,结果显示其较目前主流评价算法保有很强竞争力,对传统算法改进效果显著,与人眼主观感受一致性高,普适于多种噪声类型。

  • 图  1  改进算法主体框架

    图  2  改进算法动态阈值与传统算法固定阈值分块结果

    表  1  数据库信息及实验使用子集

    数据库国家/机构参考图像数量主观评价指标所选失真类型损伤层级
    LIVE美国/德克萨斯州立大学29DMOS白噪声(WN)6
    TID2008乌克兰/国家航空航天大学
    意大利/罗马大学
    芬兰/坦佩雷理工大学
    25MOS加性高斯噪声(AGN)5
    颜色通道加性噪声(ANCC)
    空间相关噪声(SCN)
    掩蔽噪声(MN)
    高频噪声(HFN)
    脉冲噪声(IMN)
    下载: 导出CSV

    表  2  改进算法与不同检噪阈值下传统NRPSNR算法对monarch图像组评价结果

    DMOSNRPSNRMNRPSNR
    Nth=10Nth=50Nth=100
    图2(a1)0.00000058.3513869.7431279.0868490.0779
    图2(a2)23.9427550.4551869.3139179.5171977.9929
    图2(a3)28.4490547.5042869.0137179.7020276.7756
    图2(a4)41.1695939.0309549.2887865.9513568.3129
    图2(a5)49.0867536.4791243.0307852.7284065.3847
    图2(a6)65.7302933.0634836.5205141.1789360.7793
    下载: 导出CSV

    表  3  MNRPSNR与相关算法特征及在LIVE数据库测试性能指标

    算法名称是否有参考图像是否需要训练是否需要域变换性能指标
    PLCCSROCCRMSE
    PSNR0.90500.90108.4500
    SSIM0.97000.96903.9540
    BIQI小波0.95380.95108.4094
    LBIQ小波0.97610.97007.9100
    DIIVINE小波0.98800.98404.3100
    BLIINDS离散余弦0.91400.890011.2700
    BLIINDS-II离散余弦0.97990.9691N/A
    NIQE0.97730.9662N/A
    BRISQUE0.98510.9786N/A
    NRPSNR0.86810.890010.9133
    MNRPSNR0.97450.98134.9369
    下载: 导出CSV

    表  4  TID2008数据库测试PLCC指标比对

    VSNRIFCNQMUQINRPSNRMNRPSNR
    AGN0.75130.61470.73970.54070.64670.7922
    ANCC0.74890.56280.69350.49300.04020.7291
    SCN0.77000.65670.77570.55890.16240.5808
    MN0.77990.73090.75750.75150.79030.5164
    HFN0.88610.71990.91340.70590.92830.9005
    IMN0.62440.49500.74920.48290.64030.8214
    下载: 导出CSV

    表  5  TID2008数据库测试SROCC指标比对

    VSNRIFCNQMUQINRPSNRMNRPSNR
    AGN0.77450.62040.75920.53350.62760.7900
    ANCC0.77250.59210.72000.47980.08690.7115
    SCN0.78600.64030.79100.54720.04910.5786
    MN0.75550.73740.76240.72920.80180.5214
    HFN0.88700.74880.89520.68630.90390.8852
    IMN0.64600.53780.76660.49510.64950.8300
    下载: 导出CSV

    表  6  TID2008数据库测试RMSE指标比对

    VSNRIFCNQMUQINRPSNRMNRPSNR
    AGN0.40050.47830.41310.51120.46820.3746
    ANCC0.36460.44480.39420.48440.55940.3832
    SCN0.38780.46550.39240.50550.61340.5060
    MN0.37450.38440.38900.39550.36730.5133
    HFN0.42590.60690.36910.66710.35630.4161
    IMN0.40220.43660.34020.44830.39330.2948
    下载: 导出CSV

    表  7  MNRPSNR与相关算法在LIVE数据库上运行时间(s)

    算法名称DIIVINEBLIINDS-IINRPSNRMNRPSNR
    平均单幅耗时149703.4510.10
    下载: 导出CSV
  • HADIZADEH H and VAN BAJIC I. Full-reference objective quality assessment of tone-mapped images[J]. IEEE Transactions on Multimedia, 2018, 20(2): 392–404. doi: 10.1109/TMM.2017.2740023
    MA Jian, AN Ping, SHEN Liquan, et al. Reduced-reference stereoscopic image quality assessment using natural scene statistics and structural degradation[J]. IEEE Access, 2018, 6: 2768–2780. doi: 10.1109/ACCESS.2017.2785282
    FANG Yuming, YAN Jiebin, LI Leida, et al. No reference quality assessment for screen content images with both local and global feature representation[J]. IEEE Transactions on Image Processing, 2018, 27(4): 1600–1610. doi: 10.1109/TIP.2017.2781307
    WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. doi: 10.1109/TIP.2003.819861
    YE Peng and DAVID D. No-reference image quality assessment based on visual codebook[C]. IEEE International Conference on Image Processing, Brussels, Belgium 2011: 11–14.
    WAN Wenfei, WU Jinjian, XIE Xuemei, et al. A novel just noticeable difference model via orientation regularity in DCT domain[J]. IEEE Access, 2017, 5: 22953–22964. doi: 10.1109/ACCESS.2017.2699858
    MA Lin, WANG Xu, LIU Qiong, et al. Reorganized DCT-based image representation for reduced reference stereoscopic image quality assessment[J]. Neurocomputing, 2016, 215: 21–31. doi: 10.1016/j.neucom.2015.06.116
    SAAD M A, BOVIK A C, and CHARRIER C. A DCT statistics-based blind image quality index[J]. IEEE Signal Processing Letters, 2010, 17(6): 583–586. doi: 10.1109/LSP.2010.2045550
    SAAD M A, BOVIK A C, and CHARRIER C. Blind image quality assessment: A natural scene statistics approach in the DCT domain[J]. IEEE Transactions on Image Processing, 2012, 22(8): 3339–3352. doi: 10.1109/TIP.2012.2191563
    CHANDLER D M and HEMAMI S S. VSNR: A wavelet-based visual signal-to-noise ratio for natural images[J]. IEEE Transactions on Image Processing, 2007, 16(9): 2284–2298. doi: 10.1109/TIP.2007.901820
    QIN Ming, LÜ Xiaoxin, CHEN Xiaohui, et al. Hybrid NSS features for no-reference image quality assessment[J]. IET Image Processing, 2017, 11(6): 443–449. doi: 10.1049/iet-ipr.2016.0411
    LI Leida, YAN Ya, LU Zhaolin, et al. No-reference quality assessment of deblurred images based on natural scene statistics[J]. IEEE Access, 2017, 5: 2163–2171. doi: 10.1109/ACCESS.2017.2661858
    YANG Guangyi, LIAO Yue, ZHANG Qingyi, et al. No-reference quality assessment of noise-distorted images based on frequency mapping[J]. IEEE Access, 2017, 5: 23146–23156. doi: 10.1109/ACCESS.2017.2764126
    ABDEL-HAMID L, EI-RAFEI A, and MICHELSON G. No-reference quality index for color retinal images[J]. Computers in Biology and Medicine, 2017, 90: 68–75. doi: 10.1016/j.compbiomed.2017.09.012
    MA Kede, LIU Wentao, ZHANG Kai, et al. End-to-end blind image quality assessment using deep neural networks[J]. IEEE Transactions on Image Processing, 2018, 27(3): 1202–1213. doi: 10.1109/TIP.2017.2774045
    LIU Tsungjung and LIU Kuanhsien. No-reference image quality assessment by wide-perceptual-domain scorer ensemble method[J]. IEEE Transaction on Image Processing, 2018, 27(3): 1138–1151. doi: 10.1109/TIP.2017.2771422
    MITTAL A, MOORTHY A K, and BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12): 4659–4708. doi: 10.1109/TIP.2012.2214050
    MOORTHY A K and BOVIK A C. Blind image quality assessment: From natural scene statistics to perceptual quality[J]. IEEE Transactions on Image Processing, 2011, 20(12): 3350–3364. doi: 10.1109/TIP.2011.2147325
    LIU Anmin and LIN Weisi. Image quality assessment based on gradient similarity[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1500–1512. doi: 10.1109/TIP.2011.2175935
    王正友, 肖文. 基于掩盖效应的无参考数字图像质量评价[J]. 计算机应用, 2006, 26(12): 2838–2840.

    WANG Zhengyou and XIAO Wen. No-reference digital image quality evaluation based on perceptual masking[J]. Computer Applications, 2006, 26(12): 2838–2840.
    徐海勇, 郁梅, 骆挺, 等. 基于非负矩阵分解的彩色图像质量评价方法[J]. 电子与信息学报, 2016, 38(3): 578–585. doi: 10.11999/JEIT150610

    XU Haiyong, YU Mei, LUO Ting, et al. A color image quality assessment method based on non-negative matrix factorization[J]. Journal of Electronics &Information Technology, 2016, 38(3): 578–585. doi: 10.11999/JEIT150610
    蒋平, 张建州. 基于局部最大梯度的无参考图像质量评价[J]. 电子与信息学报, 2015, 37(11): 2587–2593. doi: 10.11999/JEIT141447

    JIANG Ping and ZHANG Jianzhou. No-reference image quality assessment based on local maximum gradient[J]. Journal of Electronics &Information Technology, 2015, 37(11): 2587–2593. doi: 10.11999/JEIT141447
    SHEIKH H R, WANG Zhou, and CORMACK L. LIVE image quality assessment database, release 2 [EB/OL]. http://live.ece.utexass.edu/research/quality, 2005.
    PONOMARENKO N. Tampere image database 2008 TID2008, version 1.0[EB/OL]. http://www.ponomarenko.info/index.html, 2009.
    Final Report from the Video Quality Experts Group on the Validation of Objective Models of Video Quality Assessment, Phase II VQEG [OL]. http://www.vqeg.org/, 2003.
    MOORTHY A K and BOVIK A C. A two-step framework for constructing blind image quality indices[J]. IEEE Signal Processing Letters, 2010, 17(5): 513–516. doi: 10.1109/LSP.2010.2043888
    TANG Huixuan, JOSHI N, and KAPOOR A. Learning a blind measure of perceptual image quality[C]. IEEE Conference on Computer Vision and Pattern Recognition, Colorado, USA, 2011: 305–312.
    MITTAL A, SOUNDARARAJAN R, and BOVIK A C. Making a " completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3): 209–212. doi: 10.1109/LSP.2012.2227726
    SHEIKH H R, BOVIK A C, and DE VECIANA G. An information fidelity criterion for image quality assessment using natural scene statistics[J]. IEEE Transactions on Image Processing, 2005, 14(12): 2117–2128. doi: 10.1109/TIP.2005.859389
    DAMERA-VENKATA N, KITE T D, GEISLER W S, et al. Image quality assessment based on a degradation model[J]. IEEE Transactions on Image Processing, 2000, 9(4): 636–650. doi: 10.1109/83.841940
    WANG Zhou and BOVIK A C. A universal image quality index[J]. IEEE Signal Processing Letters, 2002, 9(3): 81–84. doi: 10.1109/97.995823
  • 加载中
图(2) / 表(7)
计量
  • 文章访问数:  1412
  • HTML全文浏览量:  658
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-28
  • 修回日期:  2018-08-13
  • 网络出版日期:  2018-08-21
  • 刊出日期:  2019-01-01

目录

    /

    返回文章
    返回