高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于确定性压缩感知采样策略的阵列失效单元远场诊断方法

李玮 邓维波 杨强 MIGLIOREMarco Donald

李玮, 邓维波, 杨强, MIGLIOREMarco Donald. 基于确定性压缩感知采样策略的阵列失效单元远场诊断方法[J]. 电子与信息学报, 2018, 40(11): 2541-2546. doi: 10.11999/JEIT180175
引用本文: 李玮, 邓维波, 杨强, MIGLIOREMarco Donald. 基于确定性压缩感知采样策略的阵列失效单元远场诊断方法[J]. 电子与信息学报, 2018, 40(11): 2541-2546. doi: 10.11999/JEIT180175
Wei LI, Weibo DENG, Qiang YANG, Marco Donald MIGLIORE. Deterministic Compressed Sensing Sampling Strategy for Diagnosis of Defective Array Elements Using Far-field Measurements[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2541-2546. doi: 10.11999/JEIT180175
Citation: Wei LI, Weibo DENG, Qiang YANG, Marco Donald MIGLIORE. Deterministic Compressed Sensing Sampling Strategy for Diagnosis of Defective Array Elements Using Far-field Measurements[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2541-2546. doi: 10.11999/JEIT180175

基于确定性压缩感知采样策略的阵列失效单元远场诊断方法

doi: 10.11999/JEIT180175
基金项目: 哈尔滨工业大学博士生国外短期访学项目基金(AUDQ9802200116),中央高校基本科研业务费专项资金(HIT.MKSTISP.2016 13, HIT.MKSTISP.2016 26)
详细信息
    作者简介:

    李玮:男,1988年生,博士,研究方向为基于压缩感知的阵列诊断方法

    邓维波:男,1961年生,教授,博士生导师,研究方向为阵列信号处理、雷达系统、压缩感知理论

    杨强:男,1970年生,教授,博士生导师,研究方向为弱目标检测、新体制信号处理和信息提取、实时信号处理

    MIGLIOREMarco Donald:MIGLIORE Marco Donald:男,1960年生,教授,博士生导师,研究方向为阵列诊断、天线测量、电磁场理论与技术、MIMO雷达

    通讯作者:

    邓维波  dengweibo@hit.edu.cn

  • 中图分类号: TN911.7

Deterministic Compressed Sensing Sampling Strategy for Diagnosis of Defective Array Elements Using Far-field Measurements

Funds: The Short-term Visiting Abroad Program for Doctoral Candidates of Harbin Institute of Technology (AUDQ9802200116), The Fundamental Research Funds for the Central Universities (HIT.MKSTISP.2016 13, HIT.MKSTISP.2016 26)
  • 摘要: 在采用压缩感知的阵列失效单元诊断方法中,结构化随机采样策略的运用对测量矩阵性能造成不利影响。针对这一问题,该文提出一种基于确定性压缩感知采样策略的阵列失效单元远场诊断方法。首先在失效单元个数满足稀疏性的前提下构造差异性阵列并将其激励作为稀疏向量,其次利用所提方法构造确定性部分傅里叶矩阵(DPFM)作为测量矩阵,最后采用l1范数最小化算法对稀疏向量进行重构,从而实现对失效单元的高概率精确诊断。理论分析和仿真实验表明,所提方法有效消除了采样位置的随机分布特性对测量矩阵性能造成的不利影响,简化了采样过程,提高了诊断成功概率。
  • 图  1  非质数阵列转化为质数阵列示意图

    图  2  不同失效模式下两种采样策略对应诊断结果的均方根误差分布情况

    图  3  4种不同采样策略对应的诊断成功概率与失效单元个数关系

    图  4  2种不同采样策略对非质数阵列进行诊断的相变特性图

  • 李玮, 邓维波, 杨强, 等. 采用压缩感知的阵列失效单元诊断方法[J]. 西安电子科技大学学报, 2018, 45(2): 160–165 doi: 10.3969/j.issn.1001-2400.2018.02.027

    LI Wei, DENG Weibo, YANG Qiang, et al. Diagnosis method for defective array elements based on compressive sensing[J]. Journal of Xidian University, 2018, 45(2): 160–165 doi: 10.3969/j.issn.1001-2400.2018.02.027
    LEE J J, FERREN E M, WOOLLEN D P, et al. Near-field probe used as a diagnostic tool to locate defective elements in an array antenna[J]. IEEE Transactions on Antennas and Propagation, 1988, 36(6): 884–889 doi: 10.1109/8.1192
    BUCCI O M, MIGLIORE M D, PANARIELLO G, et al. Accurate diagnosis of conformal arrays from near field data using the matrix method[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(3): 1114–1120 doi: 10.1109/TAP.2004.842656
    MIGLIORE M D. A compressed sensing approach for array diagnosis from a small set of near-field measurements[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(6): 2127–2133 doi: 10.1109/TAP.2011.2144556
    MIGLIORE M D. Array diagnosis from far-field data using the theory of random partial fourier matrices[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 745–748 doi: 10.1109/LAWP.2013.2270931
    OLIVERI G, ROCCA P, and MASSA A. Reliable diagnosis of large linear arrays−A Bayesian compressive sensing approach[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(10): 4627–4636 doi: 10.1109/TAP.2012.2207344
    INCE T and OGUCU G. Array failure diagnosis using nonconvex compressed sensing[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 992–995 doi: 10.1109/LAWP.2015.2489760
    FORNASIER M and RAUHUT H. Handbook of Mathematical Methods in Imaging[M]. New York, NY, USA: Springer, 2011: 205–206.
    芦存博, 肖嵩, 权磊. 基于二进制序列族的压缩感知测量矩阵构造[J]. 电子与信息学报, 2016, 38(7): 1682–1688 doi: 10.11999/JEIT151076

    LU Cunbo, XIAO Song, and QUAN Lei. Construction of compressed sensing measurement matrix based on binary sequence family[J]. Journal of Electronics&Information Technology, 2016, 38(7): 1682–1688 doi: 10.11999/JEIT151076
    THILL M and HASSIBI B. Group frames with few distinct inner products and low coherence[J]. IEEE Transactions on Signal Processing, 2015, 63(19): 5222–5237 doi: 10.1109/TSP.2015.2450195
    APPLEBAUM L, BAJWA W U, CALDERBANK A R, et al. Deterministic pilot sequences for sparse channel estimation in OFDM systems[C]. 2011 17th International Conference on Digital Signal Processing, Corfu, Greece, 2011: 1–7.
    HAUPT J, APPLEBAUM L, and NOWARK R. On the restricted isometry of deterministically subsampled Fourier matrices[C]. 2010 44th Annual Conference on Information Sciences and Systems, Princeton, USA, 2010: 1–6.
    XU Guangwu and XU Zhiqiang. Compressed sensing matrices from Fourier matrices[J]. IEEE Transactions on Information Theory, 2015, 61(1): 469–478 doi: 10.1109/TIT.2014.2375259
    XIONG Can and XIAO Gaobiao. Diagnose element failures of phased antenna arrays with a single fixed receiving probe[C]. 2017 International Applied Computational Electromagnetics Society Symposium, Suzhou, China, 2017: 1–2.
    MOKHTAR M, HAMILA R, BAJWA W U, et al. Deterministic measurement procedures for diagnosis of massive uniform linear antenna arrays[C]. 2016 IEEE Global Conference on Signal and Information Processing, Washington, DC, USA, 2016: 1388–1392.
    DONOHO D L and TANNER J. Precise undersampling theorems[J]. Proceedings of the IEEE, 2010, 98(6): 913–924 doi: 10.1109/JPROC.2010.2045630
  • 加载中
图(4)
计量
  • 文章访问数:  1479
  • HTML全文浏览量:  619
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-09
  • 修回日期:  2018-08-22
  • 网络出版日期:  2018-08-28
  • 刊出日期:  2018-11-01

目录

    /

    返回文章
    返回