Loading [MathJax]/jax/output/HTML-CSS/jax.js
高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于稀疏贝叶斯学习的机载双基雷达杂波抑制

吕晓德 杨璟茂 岳琦 张汉良

张嵘, 肖先赐. 任意中频带通信号多相数字下变频方法[J]. 电子与信息学报, 2003, 25(9): 1285-1289.
引用本文: 吕晓德, 杨璟茂, 岳琦, 张汉良. 基于稀疏贝叶斯学习的机载双基雷达杂波抑制[J]. 电子与信息学报, 2018, 40(11): 2651-2658. doi: 10.11999/JEIT180062
Zhang Rong, Xiao Xianci . Polyphase based digital downconvertion of random if signals[J]. Journal of Electronics & Information Technology, 2003, 25(9): 1285-1289.
Citation: Xiaode LÜ, Jingmao YANG, Qi YUE, Hanliang ZHANG. Airborne Bistatic Radar Clutter Suppression Based on Sparse Bayesian Learning[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2651-2658. doi: 10.11999/JEIT180062

基于稀疏贝叶斯学习的机载双基雷达杂波抑制

doi: 10.11999/JEIT180062
详细信息
    作者简介:

    吕晓德:男,1969年生,研究员,博士生导师,研究方向为基于阵列技术的新体制雷达系统及其应用

    杨璟茂:男,1992年生,硕士生,研究方向为机载双基雷达杂波抑制

    岳琦:男,1992年生,硕士生,研究方向为机载双基雷达杂波抑制

    张汉良:男,1992年生,硕士生,研究方向为基于4G信号的外辐射源雷达

    通讯作者:

    杨璟茂  yangjingmao@live.com

  • 中图分类号: TN959.73

Airborne Bistatic Radar Clutter Suppression Based on Sparse Bayesian Learning

  • 摘要: 机载双基雷达杂波与构型有关且具有严重的距离依赖性,因此杂波脊复杂多变,独立同分布(IID)的样本很少。传统的空时自适应处理(STAP)方法受独立同分布样本数的限制,对机载双基雷达杂波的抑制性能有限。基于机载雷达杂波在角度-多普勒域分布的稀疏特性和稀疏贝叶斯学习(SBL)在稀疏信号重建方面的优势,该文将SBL算法应用于较为复杂的机载双基雷达双动模式下杂波抑制,该方法可以用少量训练单元杂波估计待测距离单元的杂波协方差矩阵(CCM),然后进行空时自适应处理;同时,该算法不需要样本独立同分布,在双基双动模式下对杂波的抑制性能较好,仿真结果验证了算法的有效性。
  • 图  1  机载双基雷达几何模型

    图  2  机载单基雷达与机载双基雷达杂波对比

    图  4  双基构型2下杂波分布及杂波估计结果

    图  3  双基构型1下杂波分布及杂波估计结果

    图  5  改善因子对比曲线

    表  1  MSBL算法流程

     (1)初始化 β的合理值; (2)初始化一个基向量 φ1,由 C=ΦΛ1ΦH+βIMN计算 C1=βIM,由 ai=φHiC1iφi, bi=φHiC1ix计算 a1, b1, 根据式(19)计算 ˆα1,得到更新后的 Λ;  (3)计算均值 μ和方差 Σ,及所有基向量对应的 ai, bi;  (4)如果 b2i>aiˆαi<,则按式(19)更新 ˆαi;如果 b2i>aiˆαi=,在模型中增加基向量[16,17]φi,并按式(19)更新 ˆαi;如 果 b2i<aiˆαi<,在模型中删除原子向量 φi,并更新 ˆαi=,更新 Λ;  (5)由 μ, Σ更新 β;  (6)由 β0, Λ计算均值 μ和方差 Σ及所有基向量对应的 ai, bi;  (7)判断是否收敛,收敛则算法结束,否则转到步骤(4)继续迭代。
    下载: 导出CSV

    表  2  系统仿真参数

    符号 参数名 参数值
    fc 载频 1 GHz
    fprf 脉冲重复频率 1200 Hz
    d 天线阵元间隔 0.15 m
    N 天线阵元数 16
    M 相干积累脉冲数 10
    L 基线长度 50 km
    Rst 目标单元双基距离和 70 km
    HT 发射载机平台高度 2 km
    HR 接收载机平台高度 5 km
    VT 发射载机平台速度 100 m/s
    VR 接收载机平台速度 80 m/s
    CNR 杂噪比 30 dB
    下载: 导出CSV
  • WILLIS N J and GRIFFITHS H D. Advances in bistatic radar[J]. IEEE Aerospace and Electronic Systems Magazine, 2008, 23(7): 46–46 doi: 10.1109/MAES.2008.4579292
    段锐. 机载双基地雷达杂波仿真与抑制技术研究[D]. [博士论文], 电子科技大学, 2009.

    DUAN Rui. The study on airborne bistatic radar clutter simulation and cancellation techniques[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2009.
    WARD J. Space-time adaptive processing for airborne radar[C]. International Conference on Acoustics, Speech, and Signal Processing, Detroit, MI, USA, 1995: 2809–2812. doi: 10.1109/ICASSP.1995.479429.
    KLEMM R. Principles of space-time adaptive processing[J]. Electronics&Communication Engineering Journal, 2002, 14(6): 295–296.
    WICKS M C, RANGASWAMY M, ADVE R, et al. Space-time adaptive processing: A knowledge-based perspective for airborne radar[J]. IEEE Signal Processing Magazine, 2006, 23(1): 51–65 doi: 10.1109/MSP.2006.1593337
    KLEMM R. Space-time adaptive processing: principles and applications[J]. Electronics&Communications Engineering Journal, 1999, 11(4): 172–172.
    KREYENKAMP O and KLEMM R. Doppler compensation in forward-looking STAP radar[J]. IEE Proceedings - Radar,Sonar and Navigation, 2001, 148(5): 253–258 doi: 10.1049/ip-rsn:20010557
    HIMED B, ZHANG Yinmin, and HAJJARI A. STAP with angle-doppler compensation for bistatic airborne radars[C]. Proceedings of the 2002 IEEE Radar Conference, Long Beach, CA, USA, 2002: 311–317. doi: 10.1109/NRC.2002.999737.
    HAYWARD S D. Adaptive beamforming for rapidly moving arrays[C]. Proceedings of International Radar Conference, Beijing, China, 1996: 480–483. doi: 10.1109/ICR.1996.574504.
    REED I S, MALLETT J D, and BRENNAN L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, AES-10(6): 853–863 doi: 10.1109/TAES.1974.307893
    WANG H and CAI L. On adaptive spatial-temporal processing for airborne surveillance radar systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 660–670 doi: 10.1109/7.303737
    孙英. 机载雷达空时自适应处理技术研究[D]. [硕士论文], 南京邮电大学, 2013.

    SUN Ying. Study on space-time adaptive pprocessing technology for airborne radar[D]. [Master dissertation], Nanjing University of Posts and Telecommunications, 2013.
    张永顺, 冯为可, 赵杰, 等. 时变加权的机载双基雷达降维空时自适应处理[J]. 电波科学学报, 2015, 30(1): 194–200 doi: 10.13443/j.cjors.2014040701

    ZHANG Yongshun, FENG Kewei, ZHAO Jie, et al. A dimensional-reduced STAP for airborne bistatic radar based on time-varying weighting techniques[J]. Chinese Journal of Radio Science, 2015, 30(1): 194–200 doi: 10.13443/j.cjors.2014040701
    WU Q, ZHANG Y D, AMIN M G, et al. Complex multitask bayesian compressive sensing[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 2014: 3375–3379. doi: 10.1109/ICASSP.2014.6854226.
    POLI L, OLIVERI G, VIANI F, et al. MT-BCS-based microwave imaging approach through minimum-norm current expansion[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(9): 4722–4732 doi: 10.1109/TAP.2013.2265254
    ZHANG Yimin and HIMED B. Space-time adaptive processing in bistatic passive radar exploiting complex bayesian learning[C]. 2014 IEEE Radar Conference, Cincinnati, OH, 2014: 0923–0926. doi: 10.1109/RADAR.2014.6875723.
    WU Qisong, ZHANG Yimin, AMIN M G, et al. Space-time adaptive processing in bistatic passive radar exploiting group sparsity[C]. 2015 IEEE Radar Conference, Arlington, VA, UAS, 2015: 0886–0890. doi: 10.1109/RADAR.2015.7131120.
    CARLIN M, ROCCA P, OLIVERI G, et al. Directions-of-arrival estimation through bayesian compressive sensing strategies[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(7): 3828–3838 doi: 10.1109/TAP.2013.2256093
    OLIVERI G, ROCCA P, and MASSA A. A bayesian-compressive-sampling-based inversion for imaging sparse scatterers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3993–4006 doi: 10.1109/TGRS.2011.2128329
    OLIVERI G, CARLIN M, and MASSA A. Complex-weight sparse linear array synthesis by bayesian compressive sampling[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(5): 2309–2326 doi: 10.1109/TAP.2012.2189742
    YANG Pengcheng, LÜ Xiaode, CHAI Zhihai, et al. Clutter cancellation along the clutter ridge for airborne passive radar[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(6): 951–955 doi: 10.1109/LGRS.2017.2689076
    SUN Ke, ZHANG Hao, LI Gang, et al. A novel STAP algorithm using sparse recovery technique[C]. IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 2009: 336–339. doi: 10.1109/IGARSS.2009.5417664.
    WANG Lei, LIU Yimin, MA Zeqiang, et al. A novel STAP method based on structured sparse recovery of clutter spectrum[C]. 2015 IEEE Radar Conference, Arlington, VA, USA, 2015: 0561–0565. doi: 10.1109/RADAR.2015.7131061.
    MACKAY D J C. Bayesian Interpolation[J]. Neural Computation, 1992, 4(3): 415–447 doi: 10.1162/neco.1992.4.3.415
    赵军, 田斌, 朱岱寅. 基于PAST处理的机载双基雷达自适应角度-多普勒补偿算法[J]. 雷达学报, 2017, 6(6): 594–601 doi: 10.12000/JR17053

    ZHAO Jun, TIAN Bin, and ZHU Daiyin. Adaptive angle-Doppler compensation method for airborne bistatic radar based on PAST[J]. Journal of Radars, 2017, 6(6): 594–601 doi: 10.12000/JR17053
    WU Qisong, ZHANG Yimin, AMIN M G, et al. Space-time adaptive processing and motion parameter estimation in multistatic passive radar using sparse bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 944–957 doi: 10.1109/TGRS.2015.2470518
    谢文冲, 段克清, 王永良. 机载雷达空时自适应处理技术研究综述[J]. 雷达学报, 2017, 6(6): 575–586 doi: 10.12000/JR17073

    XIE Wenchong, DUAN Keqing, and WANG Yongliang. Space-time adaptive processing technique for airborne radar:an overview of its development and prospects[J]. Journal of Radars, 2017, 6(6): 575–586 doi: 10.12000/JR17073
  • 期刊类型引用(21)

    1. 李民,郭琳,姚雄. 优化高斯过程回归在太阳能集热效率预测上的应用. 电网与清洁能源. 2023(08): 127-131+138 . 百度学术
    2. Han-shan Li. Recognition model and algorithm of projectiles by combining particle swarm optimization support vector and spatial-temporal constrain. Defence Technology. 2023(09): 273-283 . 必应学术
    3. 何旭,席佩瑶,辛云宏. 基于代价敏感思想和自适应增强集成的SVM多分类算法. 微型电脑应用. 2023(09): 1-3 . 百度学术
    4. 徐红先,张书玮. 基于极限学习机及多姿态信息融合的步态识别. 机械. 2023(11): 72-80 . 百度学术
    5. 陈晓禾,曹旭刚,陈健生,胡春华,马羽. 基于三维卷积的帕金森患者拖步识别. 电子与信息学报. 2021(12): 3467-3475 . 本站查看
    6. 雷建超,刘栋博,房玉,庄祖江,刘俊豪. 基于表面肌电信号的性别差异性手势识别. 中国医学物理学杂志. 2020(03): 337-341 . 百度学术
    7. 金鑫,冯毅,尤雪汐,王佳欣. 基于机器学习的信息安全设备调配保障技术研究. 电子科技. 2020(08): 80-86 . 百度学术
    8. 孟明,闫冉,高云园,佘青山. 基于多元变分模态分解的脑电多域特征提取方法. 传感技术学报. 2020(06): 853-860 . 百度学术
    9. 王志芳,王书涛,王贵川. 粒子群优化BP神经网络在甲烷检测中的应用. 光子学报. 2019(04): 147-154 . 百度学术
    10. 邹倩颖,王小芳. 粒子群优化BP神经网络在步态识别中的研究. 实验技术与管理. 2019(08): 130-133+138 . 百度学术
    11. 郭海山,高波涌,陆慧娟. 基于Boruta-PSO-SVM的股票收益率研究. 传感器与微系统. 2018(03): 51-53+57 . 百度学术
    12. 周长林,钱志升,王勤民,余道杰,程俊平. 基于PSO-SVM方法的电源线传导泄漏信号识别与还原. 电子与信息学报. 2018(09): 2206-2211 . 本站查看
    13. 赵荣建,汤敏芳,陈贤祥,杜利东,曾华林,赵湛,方震. 基于光纤传感的生理参数监测系统研究. 电子与信息学报. 2018(09): 2182-2189 . 本站查看
    14. 胡长俊,袁树杰. 煤矿井下WSN中基于自适应粒子群聚类算法的多sink节点部署. 计算机科学. 2018(11): 103-107+123 . 百度学术
    15. 王秀娟,相从斌. 基于累积量的DoS攻击检测算法. 北京工业大学学报. 2017(09): 1328-1334 . 百度学术
    16. 杜必强,孙立江. 基于PSO-SVM模型的焊接转子环焊缝超声缺陷识别. 动力工程学报. 2017(05): 379-385 . 百度学术
    17. 赵湛,韩璐,方震,陈贤祥,杜利东,刘正奎. 基于可穿戴设备的日常压力状态评估研究. 电子与信息学报. 2017(11): 2669-2676 . 本站查看
    18. 董广宇. 基于多特征融合的复杂路况步态识别方法. 科学技术与工程. 2017(08): 202-207 . 百度学术
    19. 韩笑,佘青山,高云园,罗志增. 基于NA-MEMD和互信息的脑电特征提取方法. 传感技术学报. 2016(08): 1140-1148 . 百度学术
    20. 黄成泉,王士同,蒋亦樟,董爱美. v-软间隔罗杰斯特回归分类机. 电子与信息学报. 2016(04): 985-992 . 本站查看
    21. 徐超立,林科,杨晨,吴超华,高小榕. 基于小腿表面肌电的智能机器人协同控制方法. 中国生物医学工程学报. 2016(04): 385-393 . 百度学术

    其他类型引用(43)

  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  2232
  • HTML全文浏览量:  884
  • PDF下载量:  78
  • 被引次数: 64
出版历程
  • 收稿日期:  2018-01-16
  • 修回日期:  2018-08-13
  • 网络出版日期:  2018-08-22
  • 刊出日期:  2018-11-01

目录

    /

    返回文章
    返回