MEMS-based Three-dimensional Electric Field Sensor with Low Cross-axis Coupling Interference
-
摘要: 轴间耦合干扰是影响3维电场传感器测量准确性的重要因素。该文提出了一种低耦合干扰的MEMS 1维电场敏感芯片,并将3个上述的芯片正交组合研制出一款低轴间耦合的MEMS 3维电场传感器。不同于已见报道的测量垂直方向电场分量的MEMS 1维电场敏感芯片,该文提出的芯片采用轴对称设计,在差分电路的配合下能够测量垂直于对称轴方向的面内电场分量,并能够消除正交于测量轴方向的电场分量的耦合干扰。该MEMS 3维电场传感器具尺寸小和集成度高等优点。实验结果表明在0~120 kV/m电场强度范围内,该MEMS 3维电场传感器的轴间耦合灵敏度小于3.48%,3维电场测量误差小于7.13%。Abstract: Cross-axis coupling interference influences greatly the measurement accuracy of Three-Dimensional (3D) Electric Field Sensor (EFS). A MEMS-based One-Dimensional (1D) Electric Field Microsensor (EFM) chip with low coupling interference is presented, and a MEMS-based 3D EFS with low cross-axis coupling interference is developed by arranging three 1D EFM chips orthogonally. Different from previously reported 1D EFM chips sensitive to perpendicular electric field component, the proposed 1D EFM chip is designed to be symmetrical and connected to difference circuit, so that it is capable of sensing parallel electric field component perpendicular to axis of symmetry and eliminating coupling interference. The proposed 3D EFS has the advantages of small size and high integration. Experimental results reveal that in the range of 0~120 kV/m, the cross-axis sensitivities are within 3.48%, and the total measurement errors of this 3D EFS are within 7.13%.
-
表 1 1 维电场敏感芯片的关键参数
结构参数 参数值 感应电极宽度wsn 8 µm 屏蔽电极宽度wsh 10 µm 感应电极与屏蔽电极的间距(平衡位置)g 15 µm 相邻的两个感应电极的间距W 95 µm 感应电极长度Lsn 1030 µm 屏蔽电极长度Lsh 1045 µm 结构厚度 $\tau $ 25 µm 衬底厚度h 300 µm 感应电极数量Ne 14×2 梳齿数量Nd 84×20 谐振结构质量meff 4.4×10–5 g 等效弹性系数kq 11.3 N/m 表 2 X轴,Y轴和Z轴1维电场敏感芯片的灵敏度
电场方向 X轴1维电场敏感芯片的灵敏度
(mV·m/kV)Y轴1维电场敏感芯片的灵敏度
(mV·m/kV)Z轴1维电场敏感芯片的灵敏度
(mV·m/kV)沿X轴 0.293 0.001 0.008 沿Y轴 0.011 0.316 0.007 沿Z轴 0.008 0 0.287 表 3 3 维电场传感器在空间作不同角旋转的输出与计算电场
旋转角度 施加电场(kV/m) X轴1维电场敏感芯片
的输出(mV)Y轴1维电场敏感芯片
的输出(mV)Z轴1维电场敏感芯片
的输出(mV)合成电场(kV/m) 误差(%) $\theta $1 50 0.01 8.67 12.08 49.77 0.46 100 0.01 17.51 24.35 100.40 0.40 $\theta $2 50 0.01 13.97 6.86 49.84 0.32 100 0.04 27.74 13.99 99.56 0.44 $\theta $3 50 0.03 –10.08 –11.63 51.08 2.16 100 0.05 –20.50 –22.84 101.67 1.67 $\theta $4 50 2.56 –13.02 8.57 52.21 4.42 100 5.22 –26.73 15.99 104.02 4.02 $\theta $5 50 –8.67 9.77 8.49 53.30 6.60 100 –16.94 19.32 17.84 107.13 7.13 -
罗福山. 雷击飞行器事件与美国航天活动的发射规范[J]. 中国航天, 1993, 1:27-29.LUO Fushan. The events of lightning strikes spacecraft and the criteria of the spacecraft launches of aerospace maneuver of USA[J]. Aerospace China, 1993, 1: 27-29. ZENG Qingfeng, WANG Zhenhui, GUO Fengxia, et al. The application of lightning forecasting based on surface electrostatic field observations and radar data[J]. Journal of Electrostatics, 2013, 71(1):6-13. DOI: 10.1016/j.elstat.2012.10.007. MARUVADA P S, DALLARIE R D, and PEDNEAULT R. Development of field-mill instruments for ground-level and above-ground electric field measurement under HVDC transmission lines[J]. IEEE Transactions on Power Apparatus and Systems, 1983, 102(3): 738-744. DOI: 10.1109/TPAS.1983.318035. VAILLANCOURT G H, CARIGNAN S, and JEAN C. Experience with the detection of faulty composite insulators on high-voltage power lines by the electric field measurement method[J]. IEEE Transactions on Power Delivery, 1998, 13(2): 661-666. DOI: 10.1109/61.660958. RIEHL P S, SCOTT K L, MULLER R S, et al. Electrostatic charge and field sensors based on micromechanical resonators[J]. Journal of Microelectromechanical Systems, 2003, 12(5): 577-589. DOI: 10.1109/JMEMS.2003.818066. PENG Chunrong, CHEN Xianxiang, YE Cao, et al. Design and testing of a micromechanical resonant electrostatic field sensor[J]. Journal of Micromechanics and Microengineering, 2006, 16(5): 914-919. DOI: 10.1088/0960-1317/16/5/006. CHEN Xianxiang, PENG Chunrong, TAO Hu, et al. Thermally driven micro-electrostatic fieldmeter[J]. Sensors and Actuators A: Physical, 2006, 132(2): 677-682. DOI: 10.1016/j.sna.2006.02.044. KOBAYASHI T, OYAMA S, MAKIMOTO N, et al. An electrostatic field sensor operated by self-excited vibration of MEMS-based self-sensitive piezoelectric microcantilevers[J]. Sensors and Actuators A: Physical, 2013, 198: 87-90. DOI: 10.1016/j.sna.2013.04.016. YANG Pengfei, PENG Chunrong, FANG Dongming, et al. Design, fabrication and application of an SOI-based resonant electric field microsensor with coplanar comb-shaped electrodes[J]. Journal of Micromechanics and Microengineering, 2013, 23(5): 1-8. DOI: 10.1088/0960-1317/23/5/055002. RONCIN A, SHAFAI C, and SWATEK D R. Electric field sensor using electrostatic force deflection of a micro-spring supported membrane[J]. Sensors and Actuators A: Physical, 2005, 123: 179-184. DOI: 10.1016/j.sna.2005.02.018. CHEN T, SHAFAI C, RAJAPAKSE A, et al. Micromachined ac/dc electric field sensor with modulated sensitivity[J]. Sensors and Actuators A: Physical, 2016, 245: 76-184. DOI: 10.1016/j.sna.2016.04.054. WILLIAMS K, BRUYKER D, LIMB S, et al. Vacuum steered-electron electric-field sensor[J]. Journal of Microelectromechanical Systems, 2014, 23(1): 157-167. DOI: 10.1109/JMEMS.2013.2262924. MOHAMMED Z, GILL W A, and RASRAS M. Double-comb-finger design to eliminate cross-axis sensitivity in a dual-axis accelerometer[J]. IEEE Sensors Letters, 2017, 1(5): 1-4. DOI: 10.1109/LSENS.2017.2756108. 方奕庚, 彭春荣, 方东明, 等. 微型折叠式三维电场传感器[J]. 传感器与微系统, 2016, 35(5): 67-69. DOI: 10.13873/J.1000-9787(2016)05-0067-03.FANG Yigeng, PENG Chunrong, FANG Dongming, et al. Micro 3-dimensional folding electric field sensor[J]. Transducer and Microsystem Technologies, 2016, 35(5): 67-69. DOI: 10.13873/J.1000-9787(2016)05-0067-03. 闻小龙, 彭春荣, 方东明, 等. 基于共面去耦结构的空间三维电场测量方法[J]. 电子与信息学报, 2014, 36(10): 2504-2508. DOI: 10.3724/SP.J.1146.2013.01921.WEN Xiaolong, PENG Chunrong, FANG Dongming, et al. Measuring method of three dimensional atmospheric electric field based on coplanar decoupling structure[J]. Journal of Electronics & Information Technology, 2014, 36(10): 2504-2508. DOI: 10.3724/SP.J.1146.2013.01921. 李冰, 彭春荣, 凌必赟, 等. 基于遗传算法的三维电场传感器解耦标定方法研究[J]. 电子与信息学报, 2017, 39(9): 2252-2258. DOI: 10.11999/JEIT161277.LI Bing, PENG Chunrong, LING Biyun, et al. The decoupling calibration method based on genetic algorithm of three dimensional electric field sensor[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2252-2258. DOI: 10.11999/JEIT161277. LING Biyun, WANG Yu, PENG Chunrong, et al. Single-chip 3D electric field microsensor[J]. Frontiers of Mechanical Engineering, 2017, 12(4): 581-590. DOI: 10.1007/s11465-017-0454-x.