高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

车载视频下改进的核相关滤波跟踪算法

黄立勤 朱飘

黄立勤, 朱飘. 车载视频下改进的核相关滤波跟踪算法[J]. 电子与信息学报, 2018, 40(8): 1887-1894. doi: 10.11999/JEIT171109
引用本文: 黄立勤, 朱飘. 车载视频下改进的核相关滤波跟踪算法[J]. 电子与信息学报, 2018, 40(8): 1887-1894. doi: 10.11999/JEIT171109
HUANG Liqin, ZHU Piao. Improved Kernel Correlation Filtering Tracking for Vehicle Video[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1887-1894. doi: 10.11999/JEIT171109
Citation: HUANG Liqin, ZHU Piao. Improved Kernel Correlation Filtering Tracking for Vehicle Video[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1887-1894. doi: 10.11999/JEIT171109

车载视频下改进的核相关滤波跟踪算法

doi: 10.11999/JEIT171109
基金项目: 

国家自然科学基金(61471124),福建省重大重点科技项目(2017H6009, 2018H0018),赛尔网络创新项目(NGII20160208, NGII20170201)

Improved Kernel Correlation Filtering Tracking for Vehicle Video

Funds: 

The National Natural Science Foundation of China (61471124), The Major Science and Technology Projects in Fujian Proviuce (2017H6009, 2018H0018), The Cernet Innovation Projects (NGII20160208, NGII20170201)

  • 摘要: 针对相关滤波跟踪算法在车载视频下由于环境复杂及目标尺度变化等情况下容易跟踪失败的问题,该文提出一种基于背景信息的尺度自适应相关滤波跟踪算法。首先利用背景感知相关滤波跟踪器融合方向梯度直方图特征预测目标下一帧位置,然后根据预测位置选取图像块进行检测,最后结合动态尺度比例金字塔模型对目标进行尺度估计。实验选取了KITTI数据库中23段车载视频和标注国内的4段车载视频进行测试,实验结果表明,该算法能有效降低车载环境的复杂背景、目标尺度变化等因素干扰,整体性能优于KCF, DSST, SAMF, SATPLE等主流相关滤波算法,对车载环境下复杂背景和尺度变化的目标跟踪具有鲁棒性。
  • 刘红亮, 周生华, 刘宏伟, 等. 一种航迹恒虚警的目标检测跟踪一体化算法[J]. 电子与信息学报, 2016, 38(5): 1072-1078. doi: 10.11999/JEIT150638. LIU Hongliang, ZHOU Shenghua, LIU Hongwei, et al. An integrated target detection and tracking algorithm with constant track false alarm rate[J]. Journal of Electronics Information Technology, 2016, 38(5): 1072-1078. doi: 10.11999/JEIT150638.
    BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]. Computer Vision and Pattern Recognition, San Francisco, 2010: 2544-2550.
    HENRIQUES J F, RUI C, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]. European Conference on Computer Vision, Florence, 2012: 702-715.
    HENRIQUES J F, RUI C, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2015, 37(3): 583-596. doi: 10.1109/tpami.2014.2345390.
    毕笃彦, 库涛, 查宇飞, 等. 基于颜色属性直方图的尺度目标跟踪算法研究[J]. 电子与信息学报, 2016, 38(5): 1099-1106. doi: 10.11999/JEIT150921. BI Duyan, KU Tao, ZHA Yufei, et al. Scale-adaptive object tracking based on color names histogram[J]. Journal of Electronics Information Technology, 2016, 38(5): 1099-1106. doi: 10.11999/JEIT150921.
    QI Yuankai, ZHANG Shengping, QIN Lei, et al. Hedged deep tracking[J]. Computer Vision and Pattern Recognition, 2016, 4303-4311. doi: 10.1109/cvpr.2016.466.
    DANELLJAN M, HGER G, KHAN F S, et al. Accurate Scale Estimation for Robust Visual Tracking[C]. British Machine Vision Conference, Nottingham, 2014: 61-65.
    LI Yang and ZHU Jianke. A scale adaptive kernel correlation filter tracker with feature integration[C]. Eu-ropean Conference on Computer Vision, 2014, 8926: 254-265. doi: 10.1007/978-3-319-16181-5_18.
    XU Yulong, WANG Jiabao, LI Hang, et al. Patch-based scale calculation for real-time visual tracking[J]. IEEE Signal Processing Letters, 2015, 23(1): 40-44. doi: 10.1109/wcsp. 2015.7341015.
    AKIN O, ERDEM E, ERDEM A, et al. Deformable part- based tracking by coupled global and local corr-elation filters[J]. Journal of Visual Communication Image Representation, 2016, 38(C): 763-774. doi: 10.1016/j.jvcir. 2016.04.018.
    YAO Rui, XIA Shixiong, SHEN Fumin, et al. Exploiting spatial structure from parts for adaptive kerneli-zed correlation filter tracker[J]. IEEE Signal Processing Letters, 2016, 23(5): 658-662. doi: 10.1109/lsp.2016.2545705.
    CAMPLANI M, HANNUNA S, MIRMEHDI M, et al. Real- time RGB-D tracking with depth scaling kern-elised correlation filters and occlusion handling[C]. British Machine Vision Conference, SWANSEA, 2015. 2015: 141-145. doi: 10.5244/c.29.145.
    MA Chao, HUANG Jiabin, YANG Xiaokang, et al. Robust Visual Tracking via Hierarchical Convolutional Features[J]. Computer Vision and Pattern Recognition, 2017, (2017): 425-434. doi: 10.1007/978-3-319-70090-8_44.
    DANELLJAN M, BHAT G, KHAN F S, et al. ECO: Efficient convolution operators for tracking[C]. Computer Vision and Pattern Recognition, Honolulu, 2017: 21-26. doi: 10.1109/ cvpr.2017.733.
    DANELLJAN M, HAGER G, KHAN F S, et al. Learning spatially regularized correlation filters for visua-l tracking[C]. International Conference on Computer Vision, Santiago, 2015: 4310-4318. doi: 10.1109/iccv.2015.490.
    GALOOGAHI H K, FAGG A, and LUCEY S. Learning background-aware correlation filters for visual tracking[J]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, 2017: 21-26. doi: 10.1109/iccv.2017.129.
    DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking[C]. Computer Vision and Pattern Recognition,Washington, 2014: 1090-1097.
    GALOOGAHI H K, SIM T, and LUCEY S. Multi-channel correlation filters[C]. IEEE International Confer-ence on Computer Vision, Sydney, 2013: 3072-3079.
    RUI C and BATISTA J. Beyond hard negative mining: efficient detector learning via block-circulant deco- mposition[C]. IEEE International Conference on Computer Vision, Sydney, 2013: 2760-2767.
    BODDETI V N, KANADE T, and KUMAR B V K V. Correlation filters for object alignment[C]. Computer Vision and Pattern Recognition (CVPR), Portland, 2013: 2291-2298.
    MUELLER M, SMITH N, and GHANEM B. Context-aware correlation filter tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 2017: 1387-1395.
    GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset[J]. International Journal of Robotics Research, 2013, 32(11): 1231-1237. doi: 10.1177/ 0278364913491297.
    WU Yi, LIM Jongwoo, and YANG Minghsuan. Online object tracking: A benchmark[C]. Computer Vision and Pattern Recognition, Portland, 2013: 2411-2418.
    BERTINETTO L, VALMADRE J, GOLODETZ S, et al. Staple: Complementary learners for real-time trac-king[C]. Computer Vision and Pattern Recognition, Las Vegas, 2016: 1401-1409.
  • 加载中
计量
  • 文章访问数:  1124
  • HTML全文浏览量:  151
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-27
  • 修回日期:  2018-04-18
  • 刊出日期:  2018-08-19

目录

    /

    返回文章
    返回