Ship Azimuthal Speed Estimation Method Based on Local Region Doppler Centroid in SAR Images
-
摘要: 针对现有船速估计算法大多数只能估计出舰船距离向速度的问题,该文提出一种基于合成孔径雷达(SAR)图像局域中心频率的舰船方位向速度估计方法。首先分析了动目标在SAR图像局域多普勒中心频率的变化规律,并推导了利用中心频率变化率估计目标方位向速度的理论公式。然后给出了根据SAR图像局域方位向功率谱的概率密度函数,利用最大似然估计算法估计中心频率变化率的方法。同时,对所提方法的精度与适用性应用性进行分析。最后,通过仿真和实测数据,将该方法的估计结果与直接计算调频率获得的结果进行对比分析。结果表明,相对于调频率法,该方法具有更高的估计精度,验证了所提方法的有效性。Abstract: To deal with the problem that most of the existing ship speed estimation algorithms can only estimate the slant range speeds of ships, a ship azimuthal speed estimation method based on local region Doppler centroid for Synthetic Aperture Radar (SAR) images is proposed. Firstly, the variation of Doppler centroid of moving target in local region of SAR image is analyzed and the theoretical formula for estimating the azimuthal speed using the slope of Doppler centroid variation is derived. Then, based on the probability density function of azimuthal power spectrum, an estimation method for the slope of Doppler centroid variation using the maximum likelihood estimation algorithm is presented. Moreover, the estimation accuracy and the applicability of the proposed method are also analyzed. Finally, the proposed method is implemented on simulated and filed data and the estimation results are compared with those obtained by directly calculating the frequency modulation rate. The results show that the proposed method has high estimation accuracy, which verifies the effectiveness of the proposed method.
-
Key words:
- SAR image /
- Ship speed estimation /
- Local region /
- Doppler centroid
-
表 1 仿真参数
参数 仿真1 仿真2 仿真3 仿真4 仿真5 仿真6 ${\rm{PRF}}$ 500 500 500 500 500 500 ${I_{\rm{s}}}$ 100 100 100 100 100 100 $\Delta {f_{\rm{d}}}$ 10 10 10 10 10 1~20 $N$ 13 13 13 13 5~50 13 ${N'\!\!_{\rm{a}}}$ 128 128 128 50~500 128 128 $L$ 10 10 5~100 10 10 10 ${\rm{SCR}}$ 2 0~15 2 2 2 2 ${\rm{SNR}}$ 0~15 6 6 6 6 6 表 2 点目标仿真参数
雷达波长(m) 调频率(Hz/s) 距离带宽(MHz) 天线长度(m) PRF
(Hz)平台速度(m/s) 平台高度(m) 近端斜距(m) 信噪比(dB) 信杂比(dB) 目标1方位向速度(m/s) 目标2方位向速度(m/s) 目标3方位向速度(m/s) 0.2308 2.8e13 25 4 900 100 8100 10000 2 6 –10 –5 5 表 3 不同信杂比下本文方法与调频率法估计结果的对比
SCR(dB) 均值(m/s) 方差(m2/s2) 本文方法 调频率法 本文方法 调频率法 20 –10.05 –11.01 0.0001 $ \times $10–2 0.005 $ \times $10–2 10 –10.03 –11.43 0.12 $ \times $10–2 0.32 $ \times $10–2 0 –9.92 –11.50 0.28 $ \times $10–2 0.12 –10 –9.87 –12.27 1.28 $ \times $10–2 1.65 –20 –9.82 –15.13 2.43 $ \times $10–2 7.16 表 4 本文方法及调频率法相对尾迹法的估计偏差
最大偏差(m/s) 最大相对偏差(%) 相关系数 本文方法 0.87 12 0.9986 调频率法 2.30 20 0.86 -
OUCHI K, TAMAKI S, YAGUCHI H, et al. Ship detection based on coherence images derived from cross correlation of multilook SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(3): 184–187 doi: 10.1109/LGRS.2004.827462 IERVOLINO P and GUIDA R. A novel ship detector based on the generalized-likelihood ratio test for SAR imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(8): 3616–3630 doi: 10.1109/JSTARS.2017.2692820 OUCHI K, IEHARA M, MORIMURA K, et al. Nonuniform azimuth image shift observed in the Radarsat images of ships in motion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(10): 2188–2195 doi: 10.1109/TGRS.2002.802478 DRAGOSEVIC M V and VACHON P W. Estimation of ship radial speed by adaptive processing of RADARSAT-1 fine mode data[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 678–682 doi: 10.1109/LGRS.2008.2002433 ZILMAN G, ZAPOLSKI A, and MAROM M. The speed and beam of a ship from its wake’s SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(10): 2335–2343 doi: 10.1109/TGRS.2004.833390 ELDHUSET K. An automatic ship and ship wake detection system for spaceborne SAR images in coastal regions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 34(4): 1010–1019 doi: 10.1109/36.508418 种劲松, 欧阳越, 朱敏慧. 合成孔径雷达图像海洋目标检测[M]. 北京: 海洋出版社, 2006: 96–105.CHONG Jinsong, OUYANG Yue, and ZHU Minhui. Detection of Ocean Target in Synthetic Aperture Radar Imagery[M]. Beijing: Ocean Press, 2006: 96–105. KERBAOL V and COLLARD F. SAR-derived coastal and marine applications: From research to operational products[J]. IEEE Journal of Oceanic Engineering, 2006, 30(3): 472–486 doi: 10.1109/JOE.2005.857505 RENGA A and MOCCIA A. Ship velocity estimation by doppler centroid analysis of focused SAR data[C]. IEEE International Geoscience and Remote Sensing Symposium, Quebec City, Canada, 2014: 1809–1812. 孙海青, 王小青, 种劲松. 基于SAR子孔径序列图像配准的海洋动态信息获取[J]. 电子与信息学报, 2012, 34(1): 179–186 doi: 10.3724/SP.J.1146.2011.00478SUN Haiqing, WANG Xiaoqing, and CHONG Jinsong. Ocean dynamic information acquisition based on matching SAR ocean sub-aperture sequence images[J]. Journal of Electronics&Information Technology, 2012, 34(1): 179–186 doi: 10.3724/SP.J.1146.2011.00478 RENGA A and MOCCIA A. Use of doppler parameters for ship velocity computation in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7): 1–17 doi: 10.1109/TGRS.2016.2533023 云亚娇, 齐向阳, 李宁. 基于参数估计的海面运动舰船SAR成像方法[J]. 雷达学报, 2016, 5(3): 326–332 doi: 10.12000/JR15104YUN Yajiao, QI Xiangyang, and LI Ning. Moving ship SAR imaging based on parameter estimation[J]. Journal of Radars, 2016, 5(3): 326–332 doi: 10.12000/JR15104 LI Ning, WANG Robert, DENG Yunkai, et al. Fast ship detection for ScanSAR mode in wide sea areas[C]. IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 1251–1253. CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Norwood, USA: Artech House Inc., 2005: 75–114. OLIVER C and QUEGAN S. Understanding Synthetic Aperture Radar Images[M]. Raleigh, USA: SciTech Publishing, 2004: 49–100. MENG Hui, WANG Xiaoqing, CHONG Jinsong, et al. Doppler spectrum-based NRCS estimation method for low-scattering areas in ocean SAR images[J]. Remote Sensing, 2017, 9(3): 219–240 doi: 10.3390/rs9030219 CHITROUB S, HOUACINE A, and SANSAL B. Statistical characterisation and modelling of SAR images[J]. Signal Processing, 2002, 82(1): 69–92 doi: 10.1016/S0165-1684 魏翔飞, 种劲松, 王小青, 等. 一种面向水面纹理的毫米波LFMCW雷达成像算法[J]. 电子与信息学报, 2017, 39(5): 1030–1035 doi: 10.11999/JEIT160684WEI Xiangfei, CHONG Jinsong, WANG Xiaoqing, et al. Imaging algorithm of millimeter-wave LFMCW radar for water surface texture detection[J]. Journal of Electronics&Information Technology, 2017, 39(5): 1030–1035 doi: 10.11999/JEIT160684 HADDAD A. Estimation theory with applications to communications and control[J]. IEEE Transactions on Automatic Control, 1972, 17(4): 585–585 doi: 10.1109/TAC.1972.1100024 WANG Peng, WANG Xiaoqing, CHONG Jinsong, et al. Optimal parameter estimation method of internal solitary waves in SAR images and the Cramer-Rao bound[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6): 3143–3150 doi: 10.1109/TGRS.2015.2512264