Topology Based Caching Optimizing Strategy in Named Data Networking
-
摘要: 针对命名数据网络(NDN)存储空间的有效利用和应答内容的高效缓存问题,该文建立了模型并基于拓扑信息采用贪心算法求解,执行过程中考虑兴趣热度对其优化,从而有效缩短网络整体的缓存命中距离。该文基于ndnsim及一些真实拓扑数据完成了仿真实验,并对提出的算法与传统的prob算法,默认的沿途全部缓存(CEE)算法及基于度的差异缓存算法(HSS)做出了对比及分析,验证了算法的有效性。Abstract: In order to utilize storage space and fetch content effectively in Named Data Networking (NDN), this paper constructs a model for caching problem and proposes a greedy algorithm based on topology information. To optimize the algorithm, content popularity is introduced into execution. Furthermore, content hit distance is shortened effectively. This paper simulates a NDN network based on some real topology data with ndnSIM, and compares the proposed algorithm with traditional prob algorithm, default Cache Everything Everywhere (CEE) algorithm and degree based Heterogeneous Storage Size (HSS) algorithm through simulation. The results show that the algorithm proposed in this paper has better performance.
-
Key words:
- Internet /
- Named Data Networking (NDN) /
- Content cache /
- Topology
-
表 1 算法流程
第1部分:依据拓扑信息为节点分配缓存 节点计算路由表信息时: for all ${v_i} \in V$\; do for all ${v_j} \in V$\; do 计算最短路径树得到 $p(i,j)$ and $d(i,j)$ for all ${p_j} \in p(i,j)$ do for all ${v_k}$ in ${p_j}$ do $w(i,k)$+=1 for all ${v_j} \in V$\; do 计算 $w(i,j) \cdot d(i,j)$ 降序 $w(i,j) \cdot d(i,j)$ while $\sum\limits_{{v_j} \in V} {{c_i}{x_{j,{f_i}}} \le kC} $ ${x_{j,{f_i}}}$=1 end while 第2部分:执行过程中的优化 节点收到内容 If $({x_{j,f}}=1)$ then 在[0, 1]区间生成随机数 if (num<p) then cache f 表 2 真实网络拓扑参数
网络 拓扑性质 核心网规模 时间 GEANT 欧盟骨干网 37个节点,58条链路 2012年 GARR 意大利骨干网 48个节点,62条链路 2011年 DFN 德国骨干网 51个节点,80条链路 2011年 Janet 英国骨干网 28个节点,43条链路 2011年 表 3 实验设置参数
实验参数 实验设置 缓存概率(prob) 0.5 缓存概率(p) 0.5 每节点产生内容数 100 每节点请求内容频率 10 个/s 每节点缓存空间 无限 内容流行度 Zipf(q=0.7) 仿真持续时间 10 s 表 4 基于DC的HSS策略实现伪代码
for all ${v_j} \in V$\; do 计算经过 ${v_j}$的路径数 ${m_j}$ 更新最大路径数M ${v_i}$收到内容 在[0, 1]区间生成均匀分布的随机数 ------------------------if (num< $k{m_i}/M$) then cache f -
JACOBSON V, SMETTERS D K, THORNTON J D, et al. Networking named content[C]. International Conference on Emerging NETWORKING Experiments and Technologies, New York, USA, 2009: 1–12. CHIOCCHETTI R, PERINO D, CAROFIGLIO G, et al. INFORM: A dynamic interest forwarding mechanism for information centric networking[C]. ACM SIGCOMM Workshop on Information-Centric NETWORKING, Hong Kong, China, 2013: 9–14. IOANNOU A and WEBER S. A survey of caching policies and forwarding mechanisms in information-centric networking[J]. IEEE Communications Surveys&Tutorials, 2016, 18(4): 2847–2886 doi: 10.1109/COMST.2016.2565541 ZHANG Meng, LUO Hongbin, and ZHANG Hongke. A survey of caching mechanisms in information-centric networking[J]. IEEE Communications Surveys&Tutorials, 2015, 17(3): 1473–1499 doi: 10.1109/COMST.2015.2420097 LAOUTARIS N, CHE H, and STAVRAKAKIS I. The LCD interconnection of LRU caches and its analysis[J]. Performance Evaluation, 2006, 63(7): 609–634 doi: 10.1016/j.peva.2005.05.003 PSARAS I, WEI K C, and PAVLOUS G. In-network cache management and resource allocation for information-centric networks[J].IEEE Transactions on Parallel&Distributed Systems, 2014, 25(11): 2920–2931 doi: 10.1109/TPDS.2013.304 WEI K C, DILIANG H, and IOANNIS P. Cache " less for more” in information-centric networks[C]. International IFIP TC 6 Conference on NETWORKING, Prague, 2012: 27–40. WANG Sen, BI Jun, WU Jianping, et al. CPHR: In-network caching for information-centric networking with partitioning and hash-routing[J]. IEEE/ ACM Transactions on Networking, 2016, 24(5): 2742–2755 doi: 10.1109/TNET.2015.2480093 ROSSI D and ROSSINI G. On sizing CCN content stores by exploiting topological information[C]. Computer Communications Workshops, Orlando, USA, 2012: 280–285. SOURLAS V, GKATZIKIS L, FLEGKAS P, et al. Distributed cache management in information-centric networks[J]. IEEE Transactions on Network&Service Management, 2013, 10(3): 286–299 doi: 10.1109/TNSM.2013.052113.120382 LLORCA J, TULINO A M, GUAN K, et al. Dynamic in-network caching for energy efficient content delivery[C]. IEEE International Conference on Computer Communications, Turin, 2013: 245–249. KHREISHAH A, CHAKARESKI J, GHARAIBEH A, et al. Joint data placement and flow control for cost-efficient data center networks[C]. International Conference on Information and Communication Systems, Beijing, 2015: 274–279. GHARAIBEH A, KHREISHAH, JI Bo, et al. A provably efficient online collaborative caching algorithm for multicell-coordinated systems[J]. IEEE Transactions on Mobile Computing, 2016, 15(8): 1863–1876 doi: 10.1109/TMC.2015.2474364 LIU Yinlong, ZHU Dali, MA Wei, et al. A novel cooperative caching scheme for content centric mobile Ad hoc networks[C]. Computers and Communication, Messina, 2016: 824–829. WANG Yonggang, LI Zhenyu, TYSON G, et al. Design and evaluation of the optimal cache allocation for content-centric networking[J]. IEEE Transactions on Computers, 2015, 65(1): 95–107 doi: 10.1109/TC.2015.2409848 MASTORAKIS S, AFANASYEV A, MOSIEENKO I, et al. ndnSIM 2.0: A new version of the NDN simulator for NS-3[R]. NDN, Technical Report NDN-0028, Revision 2, 2016. https://named-data.net/wp-content/uploads/2016/11/ndn-0028-2-ndnsim-v2.pdf, 2016. The University of Adelaide. DFN[OL]. http://www.topology-zoo.org/maps 2017.7. LI Yanhua, XIE Haiyong, WEN Yonggang, et al. Coordinating in-network caching in content-centric networks: Model and analysis[C]. IEEE, International Conference on Distributed Computing Systems, Philadelphia, 2013: 62–72.