高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

几乎完备高斯整数序列构造法

李玉博 陈邈

李玉博, 陈邈. 几乎完备高斯整数序列构造法[J]. 电子与信息学报, 2018, 40(7): 1752-1758. doi: 10.11999/JEIT170844
引用本文: 李玉博, 陈邈. 几乎完备高斯整数序列构造法[J]. 电子与信息学报, 2018, 40(7): 1752-1758. doi: 10.11999/JEIT170844
LI Yubo, CHEN Miao. Construction of Nearly Perfect Gaussian Integer Sequences[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1752-1758. doi: 10.11999/JEIT170844
Citation: LI Yubo, CHEN Miao. Construction of Nearly Perfect Gaussian Integer Sequences[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1752-1758. doi: 10.11999/JEIT170844

几乎完备高斯整数序列构造法

doi: 10.11999/JEIT170844
基金项目: 

国家自然科学基金(61501395, 61671402),河北省自然科学基金 (F2015203150)

详细信息
    作者简介:

    李玉博: 男,1985年生,副教授,硕士生导师,研究方向为无线通信中的序列设计、编码理论. 陈 邈: 男,1993年生,硕士生,研究方向为无线通信中的序列设计.

  • 中图分类号: TN911.2

Construction of Nearly Perfect Gaussian Integer Sequences

Funds: 

The National Natural Science Foundation of China (61501395, 61671402), The Natural Science Foundation of Hebei Province (F2015203150)

  • 摘要: 该文提出基于伪随机序列构造高斯整数序列的方法。基于长度为 pm-1的p 元伪随机序列,构造得到长度为pm-1的高斯整数序列,其阶数为p-1。该类高斯整数序列具有几乎完备的自相关性能,其异相自相关函数值仅存在p-2个非零值。并且该类高斯整数序列具有良好的平衡性,在无线通信与雷达系统中都有广泛的应用前景。
  • [2] JUNGNICKEL D and POTT A. Perfect and almost perfect sequences[J]. Discrete Applied Mathematics, 1999, 95(1/3): 331-359.
    PARRAUD P. On the non-existence of (almost-) perfect quaternary sequences[J]. Lecture Notes in Computer Science, 2001, 2227: 210-218.
    [3] BOZTAS S and PARAMPALLI U. Nonbinary sequences with perfect and nearly perfect autocorrelations[C]. Proceedings of International Symposium on Information Theory (ISIT), Austin, 2010: 13-18.
    [4] CHANG Hohsuan, LIN Shiehchiang, and LEE Chongdao. A CDMA scheme based on perfect Gaussian integer sequences [J]. AEU-International Journal of Electronics and Communications, 2017, 75: 70-81. doi: 10.1016/j.aeue.2017. 03.008.
    [5] WANG Senhung, LI Chihpeng, CHANG Hohsuan, et al. A systematic method for constructing sparse Gaussian integer sequences with ideal periodic autocorrelation functions[J]. IEEE Transactions on Communications, 2016, 64(1): 365-376. doi: 10.1109/TCOMM.2015.2498185.
    [6] FAN Pingzhi and DARNELL M. Maximual length sequences over Gaussian integers[J]. Electronics Letters, 1994, 30(16): 1286-1287. doi: 10.1049/el:19940913.
    [7] HU Weiwen, WANG Senhung, and LI Chihpeng. Gaussian integer sequences with ideal periodic autocorrelation functions[J]. IEEE Transactions on Signal Processing, 2012, 60(11): 6074-6079. doi: 10.1109/TSP.2012.2210550.
    [8] PEI Soochang and CHANG Kuowei. Perfect Gaussian integer sequences of arbitrary length [J]. IEEE Signal Processing Letters, 2015, 22(8): 1040-1044. doi: 10.1109/LSP.2014. 2381642.
    [9] CHANG Hohsuan, LI Chihpeng, LEE Chongdao, et al. Perfect Gaussian integer sequences of arbitrary composite length[J]. IEEE Transactions on Information Theory, 2015, 61(7): 4107-4115. doi: 10.1109/TIT.2015.2438828.
    [10] YANG Yang, TANG Xiaohu, and ZHOU Zhengchun. Perfect Gaussian integer sequences of odd prime length[J]. IEEE Signal Processing Letters. 2012, 19(10): 615-618. doi: 10.1109 /LSP.2012.2209642.
    [11] MA Xiuwen, WEN Qiaoyan, ZHANG Jie, et al. New perfect Gaussian integer sequences of periodic pq[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2013, E96-A(11): 2290-2293. doi: 10.1587/transfun.E96.A.2290.
    [12] CHEN Xinjiao, LI Chunlei, and RONG Chunming. Perfect Gaussian integer sequences from cyclic difference sets[C]. 2016 IEEE International Symposium on Information Theory, Barcelona, Spain, 2016: 115-119. doi: 10.1109/ISIT.2016. 7541272.
    [13] PENG Xiuping, REN Jiadong, XU Chengqian, et al. Gaussian integer sequences of degree-4 using difference sets [J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2016, E99-A(12): 2604-2608. doi: 10.1587/transfun.E99.A.2604.
    CHEN Xiaoyu, XU Chengqian, and LI Yubo. New Constructions of perfect Gaussian integer sequences[J]. Journal of Electronics & Information Technology, 2014, 36(9): 2081-2085. doi: 10.3724/SP.J.1146.2013.01697.
    LIU Kai and JIANG Kun. Construction of Gaussian integer sequence sets with zero correlation zone based on interleaving technique[J]. Journal of Electronics & Information Technology, 2017, 39(2): 328-334. doi: 10.11999/JEIT160276.
    LIU Tao, XU Chengqian, and LI Yubo. Construction of zero correlation zone Gaussian integer sequence sets based on difference sets[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2277-2281. doi: 10.11999/JEIT 161177.
    [17] LEE Chongdao, HUANG Yupei, CHANG Yaotsu, et al. Perfect Gaussian integer sequences of odd period 2m-1[J]. IEEE Signal Processing Letters, 2015, 22(7): 881-885. doi: 10.1109/LSP.2014.2375313.
    [18] LEE Chongdao, LI Chihpeng, CHANG Hohsuan, et al. Further results on degree-2 perfect Gaussian integer sequences[J]. IET Communications, 2016, 10(12): 1542-1552. doi: 10.1049/ iet-com.2015.1144.
    [19] LEE Chongdao and HONG Shaohua. Generation of long perfect Gaussian integer sequences[J]. IEEE Signal Processing Letters, 2017, 24(4): 515-519. doi: 10.1109/LSP. 2017.2674972.
    [20] LEE Chondao and CHEN Yanhaw. Families of Gaussian integer sequences with high energy efficiency[J]. IET Communications, 2016, 10(17): 2416-2421. doi: 10.1049/ iet-com.2016.0404.
    [21] GOLOMB W and GONG Guang. Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar[M]. Camridge University Press, 2005: 152-154.
    [22] WANG Senhung, LI Chihpeng, LEE Kuanchou, et al. A novel low-complexity precoded OFDM system with reduced PAPR [J]. IEEE Transactions on Signal Processing, 2015, 63(6): 1366-1376. doi: 10.1109/TSP.2015.2389751.
    [23] WANG Senhung and LI Chihpeng. Novel comb spectrum CDMA system using perfect Gaussian integer sequences[C]. 2015 IEEE Global Communications Conference, GLOBECOM, San Diego, USA, 2015: 1-6.
  • 加载中
计量
  • 文章访问数:  1273
  • HTML全文浏览量:  290
  • PDF下载量:  367
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-04
  • 修回日期:  2018-03-05
  • 刊出日期:  2018-07-19

目录

    /

    返回文章
    返回