高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Salisbury屏幕的UHF雷达频谱搬移

廖希 王洋 陈前斌 邵羽 叶志红

廖希, 王洋, 陈前斌, 邵羽, 叶志红. 基于Salisbury屏幕的UHF雷达频谱搬移[J]. 电子与信息学报, 2018, 40(6): 1419-1425. doi: 10.11999/JEIT170833
引用本文: 廖希, 王洋, 陈前斌, 邵羽, 叶志红. 基于Salisbury屏幕的UHF雷达频谱搬移[J]. 电子与信息学报, 2018, 40(6): 1419-1425. doi: 10.11999/JEIT170833
LIAO Xi, WANG Yang, CHEN Qianbin, SHAO Yu, YE Zhihong. Spectrum Shifting for UHF Radar Based on Salisbury Screen[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1419-1425. doi: 10.11999/JEIT170833
Citation: LIAO Xi, WANG Yang, CHEN Qianbin, SHAO Yu, YE Zhihong. Spectrum Shifting for UHF Radar Based on Salisbury Screen[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1419-1425. doi: 10.11999/JEIT170833

基于Salisbury屏幕的UHF雷达频谱搬移

doi: 10.11999/JEIT170833
基金项目: 

国家自然科学基金(61701061),重庆市基础科学与前沿技术研究专项资金(CSTC2017JCYJA0817),重庆邮电大学博士启动基金(A2016-110)

Spectrum Shifting for UHF Radar Based on Salisbury Screen

Funds: 

The National Natural Science Foundation of China (61701061), The Chongqing Research Program of Basic Research and Frontier Technology (CSTC2017JCYJA0817), The Doctor Start-up Funding of Chongqing University of Posts and Telecommunications (A2016-110)

  • 摘要: 为了减缩雷达反射截面(RCS),提高工作带宽,该文基于时控反射面提出一种新型Salisbury屏幕,研究UHF雷达的频谱搬移。首先利用电磁特性的可控性,设计一种由可调电阻层、介质层和金属接地层构成的反射调制板,然后构建动态二相传输线等效电路,并且在周期性频率选择表面(FSS)加载一层电感。理论推导和仿真验证表明该屏幕能对大带宽多方向、不同极化的UHF雷达来波信号进行频谱搬移,减缩RCS,降低远距离移动目标的检测概率。
  • WANG C, CHEN M, LEI H, et al. Radar stealth and mechanical properties of a broadband radar absorbing structure[J]. Composites Part B: Engineering, 2017, 123: 19-27. doi: 10.1016/j.compositesb.2017.05.005.
    KNOTT E F, TULEY M T, and SHAEFFER J F. Radar Cross Section[M]. 2nd Edition, Norwood, Artech House, 1993.
    PANG Y, CHENG H, ZHOU Y, et al. Ultrathin and broadband high impedance surface absorbers based on metamaterial substrates[J]. Optics Express, 2012, 20(11): 12515-12520. doi: 10.1364/OE.20.012515.
    LI W, CHEN M, ZENG Z, et al. Broadband composite radar absorbing structures with resistive frequency selective surface: Optimal design, manufacturing and characterization[J]. Composites Science and Technology, 2017, 145: 10-14. doi: 10.1016/j.compscitech.2017.03.009.
    CALAOZ C and ITOH T. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications[M]. Wiley, 2006: 105-140.
    周禹龙, 曹祥玉, 高军, 等. 双频频率选择表面及其在微带天线宽带RCS减缩中的应用[J]. 电子与信息学报, 2017, 39(6): 1446-1451. doi: 10.11999/JEIT160854.
    ZHOU Yulong, CAO Xiangyu, GAO Jun, et al. Dualband frequency selective surface and its application to wideband RCS reduction of the microstrip antenna[J]. Journal of Electronics Information Technology, 2017, 39(6): 1446-1451. doi: 10.11999/JEIT160854.
    WU T K. Frequency Selective Surface and Grid Array[M]. New York: Wiley, 1995: 1-10.
    BOZZI M, PERRENGRINI L, WEINZIERL J, et al. Design, fabrication and measurement of frequency-selective surfaces [J]. Optical Engineering, 2000, 39(8): 2263-2269. doi: 10.1117 /1.1305261.
    路宝, 龚书喜, 凌劲, 等. 一种新型频率选择表面及其在天线雷达散射截面减缩中的应用[J]. 电子与信息学报, 2010, 32(1): 199-202. doi: 10.3724/SP.J.1146.2009.00046.
    LU Bao, GONG Shuxi, LING Jin, et al. A novel frequency selective surface structure and its application to RCS reduction of antennas[J]. Journal of Electronics Information Technology, 2010, 32(1): 199-202. doi: 10.3724/ SP.J.1146.2009.00046.
    XU H, BIE S, XU Y, et al. Broad bandwidth of thin composite radar absorbing structures embedded with frequency selective surfaces[J]. Composites Part A: Applied Science and Manufacturing, 2016, 80: 111-117. doi: 10.1016/ j.compositesa.2015.10.019.
    COSTA F, MONORCHIO A, and MANARA G. Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(5): 1551-1558. doi 10.1109/TAP.2010.2044329.
    GILL N, PUTHUCHERI S, SINGH D, et al. Critical analysis of frequency selective surfaces embedded composite microwave absorber for frequency range 28 GHz[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(2): 1259-1270.
    ZENG X, ZHANG L, WAN G, et al. Tunable and broadband radar absorber based on PIN diodes controllable FSS[C]. 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Guilin, China, 2016: 720-722.
    QI K, YUAN X, and WANG Y. A tunable microwave absorber based on active frequency selective surface[C]. Progress in Electromagnetics Research Symposium Proceedings, Guangzhou, China, 2014: 791-793.
    COSTA F, GENOVESI S, and MONORCHIO A. A frequency selective absorbing ground plane for low-RCS microstrip antenna arrays[J]. Progress in Electromagnetics Research, 2012, 126: 317-332. doi: 10.2528/PIER12012904.
    WANG H, KONG P, CHENG W, et al. Broadband tunability of polarization-insensitive absorber based on frequency selective surface[J]. Scientific Reports, 2016, 6: 1-8. doi: 10.1038/srep23081.
    WANG Y and TENNANT A. Time-modulated reflector array[J]. Electronics Letters, 2012, 48(16): 972-974. doi: 10.1049/el.2012.1893.
    WANG Y and TENNANT A. Experimental time-modulated reflector array[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(12): 6533-6536. doi: 10.1109/TAP. 2014.2362129.
  • 加载中
计量
  • 文章访问数:  1524
  • HTML全文浏览量:  176
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-30
  • 修回日期:  2018-01-08
  • 刊出日期:  2018-06-19

目录

    /

    返回文章
    返回