高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于BFGS拟牛顿法的压缩感知SL0重构算法

孙娜 刘继文 肖东亮

孙娜, 刘继文, 肖东亮. 基于BFGS拟牛顿法的压缩感知SL0重构算法[J]. 电子与信息学报, 2018, 40(10): 2408-2414. doi: 10.11999/JEIT170813
引用本文: 孙娜, 刘继文, 肖东亮. 基于BFGS拟牛顿法的压缩感知SL0重构算法[J]. 电子与信息学报, 2018, 40(10): 2408-2414. doi: 10.11999/JEIT170813
Na SUN, Jiwen LIU, Dongliang XIAO. SL0 Reconstruction Algorithm for Compressive Sensing Based on BFGS Quasi Newton Method[J]. Journal of Electronics & Information Technology, 2018, 40(10): 2408-2414. doi: 10.11999/JEIT170813
Citation: Na SUN, Jiwen LIU, Dongliang XIAO. SL0 Reconstruction Algorithm for Compressive Sensing Based on BFGS Quasi Newton Method[J]. Journal of Electronics & Information Technology, 2018, 40(10): 2408-2414. doi: 10.11999/JEIT170813

基于BFGS拟牛顿法的压缩感知SL0重构算法

doi: 10.11999/JEIT170813
基金项目: 国家自然科学基金(61271273)
详细信息
    作者简介:

    孙娜:女,1975年生,副教授,研究方向为信号处理与压缩感知

    刘继文:男,1990年生,硕士,研究方向为压缩感知

    肖东亮:男,1968年生,副教授,研究方向为无线通信与信息安全

    通讯作者:

    孙娜  sunnacau@126.com

  • 中图分类号: TN911.7

SL0 Reconstruction Algorithm for Compressive Sensing Based on BFGS Quasi Newton Method

Funds: The National Natural Science Foundation of China (61271273)
  • 摘要: 平滑l0范数(SL0)算法是一种基于近似l0范数的压缩感知信号重构算法,采用最速下降法和梯度投影原理,通过选择一个递减序列来逐步逼近最优解,具有匹配度高、计算量低、不需要已知信号稀疏度等优点。但是,其迭代方向为负梯度方向,使得在迭代过程中产生“锯齿现象”,导致在最优解附近收敛速度较慢。牛顿法具有较快的收敛速度,但是对初值的要求较高,并且需要计算Hesse矩阵。拟牛顿法则克服了这个缺点,利用BFGS公式计算Hesse矩阵的近似矩阵,只需要计算1阶导数信息。该文在SL0算法的基础上,结合BFGS拟牛顿法,提出一种改进的压缩感知信号重构算法。首先采用最速下降法迭代得到信号的某个估计值,然后将此估计值作为拟牛顿法的初值继续迭代,直至得到最优解。计算机仿真结果表明,在相同的条件下,该算法在重构精度、峰值信噪比和重建匹配度等方面均有较大提高。
  • 图  1  1维信号的重构仿真图

    图  2  重构误差对照仿真图

    图  3  稀疏度对重构性能的影响仿真图

    图  4  Lena图像重构仿真图

    图  5  Cameraman图像重构仿真图

    表  1  Lena图像重构参数对照表

    算法 相对误差 峰值信噪比(dB) 重建匹配度 重构时间(s)
    SL0 0.070720 28.408407 0.988565 1.520847
    NSL0 0.060162 29.754635 0.990416 1.162797
    ISL0 0.062446 29.423168 0.989117 35.939030
    L0AM 0.079117 27.436772 0.985986 78.190602
    BFGS-SL0 0.051846 30.963193 0.991374 5.106042
    下载: 导出CSV

    表  2  Cameraman图像重构参数对照表

    算法 相对误差 峰值信噪比(dB) 重建匹配度 重构时间(s)
    SL0 0.074593 25.717452 0.980426 1.362892
    NSL0 0.063440 27.123689 0.985850 1.018830
    ISL0 0.069222 26.414663 0.983943 35.028154
    L0AM 0.082170 25.002774 0.982677 68.704621
    BFGS-SL0 0.053996 28.604430 0.990689 8.143261
    下载: 导出CSV
  • CANDES E J, ROMBERG J, and TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489–509 doi: 10.1109/TIT.2005.862083
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306 doi: 10.1109/TIT.2006.871582
    CANDES E J and TAO T. Near-optimal signal recovery from random projections: universal encoding strategies[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406–5425 doi: 10.1109/TIT.2006.885507
    周燕, 曾凡智. 基于二维压缩感知和分层特征的图像检索算法[J]. 电子学报, 2016, 44(2): 453–460 doi: 10.3969/j.issn.0372-2112.2016.02.029

    ZHOU Yan and ZENG Fanzhi. An image retrieval algorithm based on two-dimensional compressive sensing and hierarchical feature[J]. Acta Electronica Sinica, 2016, 44(2): 453–460 doi: 10.3969/j.issn.0372-2112.2016.02.029
    SHARMA S K, LAGUNAS E, CHATZINOTAS S, et al. Application of compressive sensing in cognitive radio communications: A survey[J]. IEEE Communications Surveys&Tutorials, 2016, 18(3): 1838–1860 doi: 10.1109/COMST.2016.2524443
    程银波, 司菁菁, 候肖兰. 适用于无线传感器网络的层次化分布式压缩感知[J]. 电子与信息学报, 2017, 39(3): 539–545 doi: 10.11999/JEIT160439

    CHENG Yinbo, SI Jingjing, and HOU Xiaolan. Hierarchical distributed compressed sensing for wireless sensor network[J]. Journal of Electronics&Information Technology, 2017, 39(3): 539–545 doi: 10.11999/JEIT160439
    李少东, 杨军, 陈文峰, 等. 基于压缩感知理论的雷达成像技术与应用研究进展[J]. 电子与信息学报, 2016, 38(2): 495–508 doi: 10.11999/JEIT150874

    LI Shaodong, YANG Jun, CHEN Wenfeng, et al. Overview of radar imaging technique and application based on compressive sensing theory[J]. Journal of Electronics&Information Technology, 2016, 38(2): 495–508 doi: 10.11999/JEIT150874
    王峰, 向新, 易克初, 等. L0范数平滑逼近的稳健求解算法[J]. 电子与信息学报, 2015, 37(10): 2377–2382 doi: 10.11999/JEIT141590

    WANG Feng, XIANG Xin, YI Kechu, et al. Robust computational methods for smoothed L0 approximation[J]. Journal of Electronics&Information Technology, 2015, 37(10): 2377–2382 doi: 10.11999/JEIT141590
    TAN Mingkui, TSANG I W, and WANG Li. Matching pursuit LASSO Part I: Sparse recovery over big dictionary[J]. IEEE Transactions on Signal Processing, 2015, 63(3): 727–741 doi: 10.1109/TSP.2014.2385036
    TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666 doi: 10.1109/TIT.2007.909108
    田金鹏, 刘小娟, 郑国莘. 一种变步长稀疏度自适应子空间追踪算 法[J]. 自动化学报, 2016, 42(10): 1512–1519 doi: 10.16383/j.aas.2016.c150801

    TIAN Jinpeng, LIU Xiaojuan, and ZHENG Guoxin. A variable step size sparse adaptive subspace tracking algorithm[J]. Journal of Automation, 2016, 42(10): 1512–1519 doi: 10.16383/j.aas.2016.c150801
    MODHA V and BUTANI R. Compressive sensing in speech from LPC using gradient projection for sparse reconstruction[J]. International Journal of Engineering Research&Applications, 2015, 5(2): 6–8.
    董腾. 基于内点法压缩感知重构算法的研究[D]. [博士论文], 河北工业大学, 2014.

    DONG Teng. Research on compressed sensing algorithm based on interior point method[D]. [Ph.D. dissertation], Hebei University of Technology, 2014.
    MOHIMANI H, BABAIE-ZADEH M, and JUTTEN C. A fast approach for overcomplete sparse decomposition based on smoothed l0 norm[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 289–301 doi: 10.1109/TSP.2008.2007606
    林婉娟, 赵瑞珍, 李浩. 用于压缩感知信号重建的NSL0算法[J]. 新型工业化, 2011, 1(7): 78–84

    LIN Wanjuan, ZHAO Ruizhen, and LI Hao. The NSL0 algorithm for compressive sensing signal reconstruction[J]. New industrialization, 2011, 1(7): 78–84
    杨良龙, 赵生妹, 郑宝玉, 等. 基于SL0压缩感知信号重建的改进算 法[J]. 信号处理, 2012, 28(6): 834–841

    YANG Lianglong, ZHAO Shengmei, ZHENG Baoyu, et al. The improved reconstruction algorithm for compressive sensing on SL0[J]. Signal Processing, 2012, 28(6): 834–841
    王军华, 黄知涛, 周一宇. 稀疏信号重构的迭代平滑 l0范数最小化算 法[J]. 宇航学报, 2012, 33(5): 642–647 doi: 10.3873/j.issn.1000-1328.2012.05.017

    WANG Junhua, HUANG Zhitao, and ZHOU Yiyu. Sparse signal reconstruction based on iterative smoothed l0 norm minimization[J]. Journal of Astronautics, 2012, 33(5): 642–647 doi: 10.3873/j.issn.1000-1328.2012.05.017
    YE X, ZHU W P, ZHANG A, et al. Sparse channel estimation of MIMO-OFDM systems with unconstrained smoothed l0-norm-regularized least squares compressed sensing[J]. EURASIP Journal on Wireless Communications&Networking, 2013, 2013(1): 282–294 doi: 10.1186/1687-1499-2013-282
    MOHAMMADI M R, Fatemizadeh E, and MAHOOR M H. Non-negative sparse decomposition based on constrained smoothed l0 norm[J]. Signal Processing, 2014, 100: 42–50.
    李颖, 王泽, 王军华, 等. 基于 l0范数近似最小化的稀疏信号重构方 法[J]. 计算机工程与应用, 2015, 51(10): 200–204 doi: 10.3778/j.issn.1002-8331.1309-0500

    LI Ying, WANG Ze, WANG Junhua, et al. Sparse signal reconstruction based on l0 norm approximation minimization[J]. Computer Engineering and Applications, 2015, 51(10): 200–204 doi: 10.3778/j.issn.1002-8331.1309-0500
    高睿, 赵瑞珍, 胡绍海. 基于压缩感知的变步长自适应匹配追踪重建算法[J]. 光学学报, 2010, 30(6): 1639–1644

    GAO Rui, ZHAO Ruizhen, and HU Shaohai. Variable step size adaptive matching pursuit algorithm for image reconstruction based on compressive sensing[J]. Acta Optica Sinica, 2010, 30(6): 1639–1644
    陈宝林. 最优化理论与算法[M]. 第2版, 北京: 清华大学出版社, 2005: 306–314.

    CHEN Baolin. Optimization Theory and Algorithm[M]. Second Edition, Beijing: Tsinghua University Press, 2005: 306–314.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  1986
  • HTML全文浏览量:  933
  • PDF下载量:  264
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-16
  • 修回日期:  2018-07-19
  • 网络出版日期:  2018-07-26
  • 刊出日期:  2018-10-01

目录

    /

    返回文章
    返回